Comment justifier l'intervalle d'une fonction ?

Interrogée par: Bernadette Charrier-Tessier  |  Dernière mise à jour: 10. Juli 2024
Notation: 4.5 sur 5 (25 évaluations)

Si une fonction f f f est définie et continue sur un intervalle [ a ; b ] [a; b ] [a;b] ; alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), il existe au moins un réel c c c compris entre a a a et b b b tel que f ( c ) = k f(c)=k f(c)=k.

Comment montrer que c'est un intervalle ?

On appelle intervalle l'ensemble des nombres réels compris entre deux réels positifs ou réels négatifs a et b, ou de la même façon l'ensemble des points de la droite dont la marque est entre a et b. Prenons pour exemple l'intervalle [4 ; 6]. Il désigne l'ensemble des réels x tels que 4 ≤ x et x ≤ 6.

Comment démontrer la Dérivabilité d'une fonction sur un intervalle ?

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .

Comment justifier la continuité d'une fonction sur un intervalle ?

Nous savons qu'une fonction est continue sur un intervalle si la courbe représentative de la fonction n'a ni trou ni saut sur l'intervalle. En d'autres termes, cela signifie que nous pouvons tracer la courbe représentative d'une fonction continue sans lever le crayon du papier.

Comment montrer qu'une fonction est constante sur un intervalle ?

Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.

COMPRENDRE les intervalles

Trouvé 39 questions connexes

Comment justifier qu'une fonction est strictement croissante sur un intervalle ?

La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .

Comment représenter une fonction sur un intervalle ?

Si l'on veut définir une fonction sur un intervalle et obtenir sa courbe il faut saisir : Fonction[expression en fonction de x, borne inf, borne sup]. Par exemple : si on tape dans la ligne de saisie la séquence Fonction[x²,- 4,3], on obtient le tracé de la parabole sur l'intervalle [-4 ;3].

Comment montrer qu'une équation admet une solution dans un intervalle ?

En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle. Montrer que l'équation x^3-2x+1=0 admet une unique solution sur \left]-\infty ; -1 \right].

Comment étudier le sens de variation d'une fonction sur un intervalle ?

Pour étudier le sens de variation d'une fonction f dérivable sur un intervalle [a ; b], il faut :
  1. Calculer sa dérivée f '(x).
  2. Déterminer le signe de f '(x) sur [a ; b] ; appliquer le théorème suivant : • lorsque la fonction dérivée f ' est positive sur un intervalle I, la fonction f. ...
  3. Dresser le tableau de variation de f.

Comment montrer qu'une fonction admet une unique solution sur un intervalle ?

Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.

Comment justifier dérivabilité ?

Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.

Comment justifier que f est dérivable sur I ?

Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .

Comment calculer la dérivée d'une fonction sur un intervalle ?

Pour déterminer la fonction dérivée d'une fonction sur un intervalle donné, on peut revenir à la définition du nombre dérivé en un point a. On calcule alors la limite du taux d'accroissement de cette fonction entre x et a, lorsque x tend vers a. Ce calcul « à la main » est souvent très long et laborieux.

Comment prouver une fonction ?

Pour démontrer qu'une fonction définie sur I∖{a} I ∖ { a } peut se prolonger par continuité en a , on démontre que limx→af(x) lim x → a f ( x ) existe. On prolonge alors f par continuité en posant f(a)=limaf. f ( a ) = lim a f .

Comment comparer deux fonctions sur un intervalle ?

Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).

Quel est l'intervalle de variation ?

Employée en statistiques, l'intervalle de variation tire son nom du fait qu'elle désigne la différence existante entre la valeur la plus élevée et celle la plus faible de la variable statistique, c'est-à-dire sa variation.

Comment montrer qu'une fonction admet une solution ?

Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .

Comment savoir si une équation n'admet pas de solution ?

Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.

Quand l'équation n'admet pas de solution ?

- si a est non nul, l'équation admet une solution unique, cette solution est -b/a. - si a=0, l'équation n'admet pas de solution . 2e cas : Si b=0: - si a est non nul, l'équation admet 0 pour solution.

Qu'est-ce qu'une fonction définie sur un intervalle ?

Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].

Comment noter un intervalle en maths ?

L'intervalle de tous les nombres entre a et b, y compris a et b, est noté comme [a,b] et si a et b sont exclus, il est noté comme ]a,b[. On peut également remplacer la virgule par un point-virgule dans les pays où les virgules sont utilisées pour écrire des nombres décimaux.

Comment savoir si la fonction est croissante ou décroissante ?

Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.

Quel est le maximum de f sur l'intervalle ?

Pour trouver le maximum d'une fonction sur un intervalle , il faut : déterminer la dérivée de la fonction, ; résoudre l'équation f ′ ( x ) = 0 ; vérifier qu'il s'agit d'un maximum en testant d'autres valeurs de la fonction, ou en utilisant la dérivée seconde.

Comment montrer qu'une fonction est strictement concave ?

La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ≥ 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ≤ 0 pour tout x de I. Soit la fonction f définie sur R par f (x) = 1 3 x3 −9x2 + 4.

Comment justifier qu'une fonction est croissante ?

Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .

Article suivant
Comment couvrir un mur moisi ?