Si une fonction f f f est définie et continue sur un intervalle [ a ; b ] [a; b ] [a;b] ; alors, pour tout réel k k k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), il existe au moins un réel c c c compris entre a a a et b b b tel que f ( c ) = k f(c)=k f(c)=k.
On appelle intervalle l'ensemble des nombres réels compris entre deux réels positifs ou réels négatifs a et b, ou de la même façon l'ensemble des points de la droite dont la marque est entre a et b. Prenons pour exemple l'intervalle [4 ; 6]. Il désigne l'ensemble des réels x tels que 4 ≤ x et x ≤ 6.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
Nous savons qu'une fonction est continue sur un intervalle si la courbe représentative de la fonction n'a ni trou ni saut sur l'intervalle. En d'autres termes, cela signifie que nous pouvons tracer la courbe représentative d'une fonction continue sans lever le crayon du papier.
Résumés. Nous étudions plusieurs démonstrations de la caractérisation suivante des fonctions constantes : une fonction, définie sur un intervalle, dérivable est constante si, et seulement si, sa dérivée est nulle.
La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .
Si l'on veut définir une fonction sur un intervalle et obtenir sa courbe il faut saisir : Fonction[expression en fonction de x, borne inf, borne sup]. Par exemple : si on tape dans la ligne de saisie la séquence Fonction[x²,- 4,3], on obtient le tracé de la parabole sur l'intervalle [-4 ;3].
En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle. Montrer que l'équation x^3-2x+1=0 admet une unique solution sur \left]-\infty ; -1 \right].
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
Théorème : Soit une fonction f définie et dérivable sur un intervalle I. - Si f '(x) ≤ 0, alors f est décroissante sur I. - Si f '(x) ≥ 0, alors f est croissante sur I. Exemple : Soit la fonction f définie sur R par f (x) = x2 − 4x .
Pour déterminer la fonction dérivée d'une fonction sur un intervalle donné, on peut revenir à la définition du nombre dérivé en un point a. On calcule alors la limite du taux d'accroissement de cette fonction entre x et a, lorsque x tend vers a. Ce calcul « à la main » est souvent très long et laborieux.
Pour démontrer qu'une fonction définie sur I∖{a} I ∖ { a } peut se prolonger par continuité en a , on démontre que limx→af(x) lim x → a f ( x ) existe. On prolonge alors f par continuité en posant f(a)=limaf. f ( a ) = lim a f .
Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes !).
Employée en statistiques, l'intervalle de variation tire son nom du fait qu'elle désigne la différence existante entre la valeur la plus élevée et celle la plus faible de la variable statistique, c'est-à-dire sa variation.
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
Si k \notin J_i alors l'équation f\left(x\right) = k n'admet pas de solution sur I_i. Si k \in J_i alors d'après le corollaire du théorème des valeurs intermédiaires, l'équation f\left(x\right) = k admet une unique solution sur I_i.
- si a est non nul, l'équation admet une solution unique, cette solution est -b/a. - si a=0, l'équation n'admet pas de solution . 2e cas : Si b=0: - si a est non nul, l'équation admet 0 pour solution.
Définition : Définir une fonction f sur un intervalle [a ; b], c'est donner un procédé qui, à tout nombre x de l'intervalle [a ; b], associe un et un seul nombre réel noté f(x). f( ) a b x x → » où « )(fx x » se lit « à x, associe f de x ». Définitions : Soit f une fonction définie sur l'intervalle [a ; b].
L'intervalle de tous les nombres entre a et b, y compris a et b, est noté comme [a,b] et si a et b sont exclus, il est noté comme ]a,b[. On peut également remplacer la virgule par un point-virgule dans les pays où les virgules sont utilisées pour écrire des nombres décimaux.
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Pour trouver le maximum d'une fonction sur un intervalle , il faut : déterminer la dérivée de la fonction, ; résoudre l'équation f ′ ( x ) = 0 ; vérifier qu'il s'agit d'un maximum en testant d'autres valeurs de la fonction, ou en utilisant la dérivée seconde.
La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ≥ 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ≤ 0 pour tout x de I. Soit la fonction f définie sur R par f (x) = 1 3 x3 −9x2 + 4.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .