Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
la dérivée n-`eme de f en a l'application x ↦→ f(n)(x). Soit n ∈ N∗. On dit que f est n-fois continûment dérivable (ou de classe Cn) sur D si f est n-fois dérivable sur D et f(n) est continue. On dit que f est indéfiniment dérivable (ou de classe C∞) sur D lorsque pour tout n ∈ N, f est n-fois dérivable sur D.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Soient I un intervalle de R, f : I → R une fonction dérivable et a ∈ I. On dit que f est deux fois dérivable en a si f est dérivable en a. La dérivée de f en a s'appelle la dérivée seconde de f en a et se note f (a). On dit que f est deux fois dérivable si f est dérivable.
D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
Sommaire. On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.
Généralement, on ne se pose pas trop de question : par exemple pour f(x) = |x|^3, il suffit de dire que la fonction valeur absolue est dérivable sur R privé de 0 ainsi, la fonction f(x) = |x|^3 est dérivable sur R privé de 0.
Soit la fonction f définie par f(x) = si x ≠ 0, et f(0) = 1. Donc la fonction f est continue en 0.
Théorème Soit f une fonction définie sur un intervalle I et a ∈ I. Si f est dérivable en a Alors f est continue en a. f(x) = f(a), et donc que f est donc continue en a.
Remarque : Dire que la fonction carré est définie sur ℝ signifie que peut prendre n'importe quelle valeur de ℝ. La courbe d'équation = de la fonction carré est appelée une parabole. Propriété : La courbe d'équation = de la fonction carré est symétrique par rapport à l'axe des ordonnées.
Soit a et b deux réels. — Si a est positif, la fonction affine f définie sur R par f(x) = ax+b est croissante. — Si a est négatif, la fonction affine f définie sur R par f(x) = ax+b est décroissante. Soit f la fonction affine définie sur R par f(x) = ax+b avec a = 0.
Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cet intervalle. L'ensemble des points sur lesquels une fonction est dérivable est son ensemble de dérivabilité. En classe de première, la dérivabilité sur un intervalle est toujours précisée dans l'énoncé des exercices.
Certains points d'une courbe peuvent ne pas avoir de dérivée. Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues.
On dit que f est prolongeable par continuité en x0 s'il existe une fonction g : D ∪ {x0} → R continue en x0 telle que g|D = f. Proposition 2.2.6. Soit f : D → R une fonction, et soit x0 ∈ D\D. Alors f est prolongeable par continuité en x0 si et seulement si f admet une limite (finie) en x0.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal.
Définition formelle
Ce calcul de limite revient graphiquement à rechercher la tangente à la courbe en ce point. Ainsi, le nombre dérivé d'une fonction en un point, s'il existe, est égal à la pente de la tangente à la courbe représentative de la fonction en ce point.
Sa dérivée est toujours positive (ou nulle pour x = 0).
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante. b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapport un+1 un à 1. ▶ Si un+1 un ⩾ 1, alors la suite (un) est croissante.