Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
Formule. k × A + k × B = k × (A + B). Pour réussir à factoriser, il faut donc identifier le facteur commun k, puis A et B. Ensuite, il faut remplacer les valeurs trouvées dans la formule.
Petite astuce vous pouvez trouver le facteur commun entre 32 et 16 en divisant le plus gros membre par le plus petit -> 32/16 = 2 donc on peut prendre 16 pour facteur commun. Pour "x" il y aura un seul 16 (1x16=16) , et pour "y" il y en aura deux ( 2x16=32).
Pour identifier un facteur commun il faut dans un premier temps essayer d'exprimer chaque terme de la somme comme un produit. - L'expression 6x + 2 + (3x + 1)2 peut s'évrire 2(3x +1) + (3x +1)(3x +1) ce qui fait apparaitre (3x +1) comme facteur commun.
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Le facteur commun est la lettre "x" (elle se trouve dans chaque terme). La 2ème étape de la factorisation est de mettre en évidence le facteur commun. Note d'abord le facteur commun devant une parenthèse. Divise ensuite chaque terme par le facteur commun et note le résultat dans la parenthèse.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
examiner s'il s'agit de sommes ou de produits et compter les termes respectivement les facteurs). Les trois méthodes de factorisation qu'il faut connaître sont : la mise en évidence, les produits (identités) remarquables et le groupement de termes.
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 32 × 5, soit 3 × 3 × 5.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Un facteur est un terme qui intervient dans une multiplication. Exprime 56 sous la forme d'un produit de facteurs. Voici deux possibilités :56=2×28 ou 56=4×2×7 56 = 2 × 28 ou 56 = 4 × 2 × 7 Pour la première factorisation de 56 , les facteurs sont 2 et 28 .
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Propriété Soit f ( x ) = a x 2 + b x + c où a ≠ 0 un polynôme du second degré et Δ = b 2 − 4 a c son discriminant. Si : se factorise sous la forme f ( x ) = a ( x − x 1 ) ( x − x 2 ) où et sont les deux racines du polynôme.
Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. A = 5 × ( x + 3 ) On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Factoriser un trinôme s'il est le développement d'un carré
Pour développer le carré d'une somme ou le carré d'une différence, on utilise les identités : ( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2
Pour calculer une expression sans parenthèses, on effectue les divisions et les multiplications avant les additions et soustractions . Quand une expression comporte plusieurs multiplications ou divisions , on effectue d'abord le calcul le plus à gauche . De même pour les additions ou soustractions.
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Ordonner une expression littérale revient à écrire les termes dans l'ordre de puissances décroissantes ou croissantes de x. x = x1 et 1 = x0. Exemple : Ordonner l'expression 23x – 56 − 2x2. 23x – 56 − 2x2 n'est pas une expression ordonnée car elle est égale à 23x1 − 56x0 − 2x2.
Pour simplifier une racine carrée, on recherche des facteurs carrés parmi les diviseurs du nombre sous la racine. Par exemple, la racine carrée de 48 peut être simplifiée en séparant les facteurs carrés : √(16 × 3) = √16 × √3 = 4√3.