P et P′ sont parallèles si et seulement si →n et →n′ sont colinéaires. P et P′ sont perpendiculaires si et seulement si →n. →n′=0.
Trouver l'équation d'une droite perpendiculaire à une autre
Dans l'équation y=mx+b y = m x + b , remplacer le paramètre m par la pente déterminée à l'étape 1. Dans cette même équation, remplacer x et y par les coordonnées (x,y) du point donné. Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine.
Définition. Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires. Exemple : Sur le schéma ci-dessous, AB est un représentant du vecteur u et AC est un représentant du vecteur v . Comme les droites (AB) et (AC) sont perpendiculaires, les vecteurs u et v sont orthogonaux.
Deux vecteurs sont orthogonaux, si et seulement si, leur produit scalaire est égal à . En effet : u → ⊥ v → si, et seulement si, ( u → , v → ) = ± π 2 si, et seulement si, ( u → , v → ) = 0 si, et seulement si, u → ⋅ v → = 0 .
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Définition 10 Soit
sont orthogonaux si leur produit scalaire est nul.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Deux droites (d) et (d') sont orthogonales si et seulement si leurs parallèles respectives passant par un même point sont perpendiculaires. Soit une droite (d) de vecteur directeur et un plan P. La droite (d) est orthogonale au plan P si le vecteur est orthogonal à tous les vecteurs du plan P.
Rappeler le cours. On rappelle que deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux, c'est-à-dire si le produit scalaire de ces deux vecteurs est nul.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
Définitions : - On appelle repère du plan tout triplet (O, ⃗, ⃗) où O est un point et ⃗et ⃗ sont deux vecteurs non colinéaires. - Un repère est dit orthogonal si ⃗et ⃗ ont des directions perpendiculaires. - Un repère est dit orthonormé s'il est orthogonal et si ⃗et ⃗ sont de norme 1.
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Ces deux vecteurs→u et →v sont colinéaires si z→vz→u z v → z u → est un réel. Ils sont orthogonaux si ce quotient est un imaginaire pur. Le plan complexe est muni d'un repère orthonormal direct (O;→u;→v) ( O ; u → ; v → ) (…).
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Lorsque deux vecteurs ont même direction (ce qui correspond à "parallèles") on dit que les vecteurs sont colinéaires. Ainsi, deux vecteurs et sont colinéaires s'il existe un nombre k tel que c'est à dire qu'un vecteur est un multiple de l'autre. Le vecteur nul est colinéaire à tout vecteur.
Pour que deux vecteurs soient orthogonaux, leur produit scalaire doit être nul. Afin de trouver la solution, il suffit de trouver lequel de ces vecteurs ne donne pas un produit scalaire nul lorsqu'il est multiplié avec ( 2 ; − 3 ; 5 ) .
Deux droites de l'espace sont perpendiculaires si et seulement si elles se coupent en formant un angle droit. Dans l'espace, des droites, non parallèles, peuvent ne pas se couper. Si une des droites est parallèle à une droite perpendiculaire à l'autre alors les deux droites sont dites orthogonales.
Produit scalaire : formule
Il y a deux formules élémentaires pour le produit scalaire qui sont couramment utilisées. Considérons les vecteurs u → = ( u x u y ) et v → = ( v x v y ) . Une première formule pour le produit scalaire est u → ⋅ v → = u x v x + u y v y .
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Conséquence : Pour montrer que deux droites (d) et (d') sont perpendiculaires, on utilisera des vecteurs directeurs respectifs de chacune des droites et on montrera que le produit scalaire des deux vecteurs est nul. Exemple On considère le rectangle suivant, avec AB = 8 et AD = 4.
Cette propriété permet de caractériser en tant que droite l'ensemble des points M(x,y) vérifiant une égalité du type ax + by + c = 0 avec (a,b) ≠ (0,0) et, de plus, permet de déterminer un vecteur directeur de cette droite.
La propriété de orthocentre d'un triangle.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.