Comment montrer qu'une fonction est unique ?

Interrogée par: Astrid Lefevre-Lemaitre  |  Dernière mise à jour: 23. Januar 2025
Notation: 4.5 sur 5 (36 évaluations)

Si une fonction f est définie, continue et strictement monotone sur un intervalle [ a ; b ] [a; b] [a;b] alors, pour tout réel k compris entre f ( a ) f(a) f(a) et f ( b ) f(b) f(b), l'équation f ( x ) = k f(x)=k f(x)=k a une unique solution dans l'intervalle [ a ; b ] [a; b] [a;b].

Comment montrer qu'une fonction admet une solution unique ?

Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .

Comment prouver l'unicité ?

Pour démontrer l'unicité d'un élément satisfaisant une propriété, la méthode la plus courante consiste à introduire deux variables pour lesquelles la propriété est satisfaite (« Soit x et x′ tel que … »), puis à démontrer l'égalité entre ces deux variables.

Comment déterminer une solution unique ?

Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b]. Pour localiser cette solution, on pourra utiliser sa calculatrice.

Comment montrer qu'une équation différentielle admet une unique solution ?

Théorème : Pour tout x0∈I x 0 ∈ I et tout y0∈K y 0 ∈ K , il existe une unique solution à l'équation différentielle y′+a(x)y=b(x) y ′ + a ( x ) y = b ( x ) vérifiant y(x0)=y0 y ( x 0 ) = y 0 .

QUESTION TYPE DU BAC #17 : le TVI

Trouvé 35 questions connexes

Comment montrer qu'une fonction admet deux solutions ?

On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .

Comment montrer qu'une équation admet une solution dans un intervalle ?

En utilisant le corollaire du théorème des valeurs intermédiaires (c'est-à-dire le théorème appliqué au cas des fonctions strictement monotones), on peut montrer qu'une équation admet une unique solution sur un intervalle. Montrer que l'équation x^3-2x+1=0 admet une unique solution sur \left]-\infty ; -1 \right].

Comment montrer qu'il existe un unique réel Alpha ?

donc, d'après le théorème des valeurs intermédiaires, il existe AU MOINS un réel alpha de ]a;b[ tel que f(alpha)=0. donc f définit une bijection de [a;b] sur f([a;b]). Par conséquent il existe UN UNIQUE réel alpha de ]a;b[ tq f(alpha)=0.

Comment montrer la monotonie d'une fonction ?

Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.

Comment savoir si une équation n'a pas de solution ?

Lorsque la valeur absolue est égale à un nombre positif |x+3|=5 | x + 3 | = 5 Comme 5 est un nombre positif, cette équation possède 2 solutions. Lorsque la valeur absolue est égale à un nombre négatif |x−4|=−25 | x − 4 | = − 25 Comme −25 est un nombre négatif, cette équation ne possède aucune solution.

Comment montrer l'unicité d'un polynôme ?

Si ∀x ∈ R, P(x)=0, alors tous les coefficients ai sont nuls. C'est un cas particulier d'unicité de l'écriture d'un polynôme.

Comment justifier une inégalité ?

2 Multiplier par un réel positif α : si x ⩽ y et α ⩾ 0, alors αx ⩽ αy. 2 Ajouter des inégalités : si x ⩽ y et a ⩽ b, alors x + a ⩽ y + b. 2 Multiplier des inégalités de nombres positifs : si 0 ⩽ x ⩽ y et 0 ⩽ a ⩽ b, alors xa ⩽ yb.

Quelle est la différence entre l'unité et l'unicité ?

C'est dire que l'unicité est l'unité de l'être et de la pluralité, de l'intelligibilité et de la totalité, de l'ordre et de l'harmonie. L'unicité est donc à la fois l'unité et la vérité de l'être.

Comment trouver la solution d'une fonction ?

Afin de déterminer le nombre de solutions d'une équation du type f\left(x\right)=k sur I, on utilise le corollaire du théorème des valeurs intermédiaires pour chaque intervalle de I sur lequel la fonction est strictement monotone.

Comment montrer qu'une fonction est continue et strictement monotone ?

Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).

Comment montrer la continuité d'une fonction sur un intervalle ?

f est une fonction définie sur un intervalle I et a est un nombre réel de I.
  1. f est continue en a si, et seulement si, f f f a une limite en a a a égale à f ( a ) f(a) f(a) , ainsi : lim ⁡
  2. f f f est continue sur I I I si, et seulement si, f f f est continue en tout nombre réel de I I I.

Quand Dit-t-on qu'une fonction est monotone ?

En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.

Comment savoir si une fonction est borné ?

Une partie A d'un espace métrique borné (E,d) est dite bornée s'il existe x∈E x ∈ E et M>0 tel que A⊂B(x,M), A ⊂ B ( x , M ) , c'est-à-dire que, pour tout x∈A, x ∈ A , d(x,a)≤M. d ( x , a ) ≤ M .

C'est quoi la monotonie ?

1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.

Comment démontrer que cette fonction est constante ?

S'il existe y = x tel que f(y) = −1 alors f est positive en x, négative en y et continue sur I. Donc, par le théor`eme des valeurs intermédiaires, il existe z entre x et y tel que f(z) = 0, ce qui contredit f(z)2 = 1. Donc f est constante égale `a +1.

Comment trouver la bijection réciproque d'une fonction ?

On va déterminer la réciproque par intervalles. Remarquons d'abord que f f définit une bijection de ]−∞;1[ ] − ∞ ; 1 [ dans ]−∞;1[ ] − ∞ ; 1 [ par la formule f(x)=x f ( x ) = x . La bijection réciproque est donnée par f−1(y)=y f − 1 ( y ) = y .

Comment justifier qu'une fonction est strictement croissante ?

On dit qu'une fonction f est strictement croissante ssi pour x et y dans le DD de f , si on a x < y, on a aussi f (x) < f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x < y ⇒ f (x) < f (y). La fonction cube x ↦→ x3 est strictement croissante, bien que sa dérivée s'annule (en zéro).

Comment savoir si une équation à plusieurs solutions ?

Si les droites sont parallèles entre elles, on aura plutôt une infinité de solution si elles sont confondues, ou l'absence de solution si elles sont disjointes. On peut résoudre un système d'équations linéaires de plusieurs façons.

Comment montrer qu'une fonction est décroissante sur un intervalle ?

Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.

Comment montrer qu'une fonction est positive sur un intervalle ?

On dit d'une fonction f qu'elle est positive sur un intervalle si, pour tout x dans cet intervalle, on a f(x) ≥ 0. La courbe représentative de la fonction est alors située au-dessus de l'axe horizontal, lorsqu'on se limite aux points dont l'abscisse appartient à l'intervalle considéré.