Soit I un intervalle de R et f:I→R f : I → R . On dit que f est uniformément continue si ∀ε>0, ∃η>0, ∀(x,y)∈I2, |x−y|<η⟹|f(x)−f(y)|<ε.
Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure. Sinon, la fonction est discontinue en ce point. Soit la fonction f définie sur par f(x) = x2+ 3x + 4 si x > 1 ; f(x) = 5 + 3x si x ≤ 1.
Critères d'intégrabilité
Une fonction réglée est intégrable sur un intervalle fermé. En particulier on en déduit que les fonctions continues, continues par morceaux, monotones ou encore à variations bornées sont toutes intégrables sur un intervalle fermé.
On dit que f est intégrable sur I ou que ∫If ∫ I f est absolument convergente si ∫I|f| ∫ I | f | converge. Théorème : Si f est intégrable sur I , alors ∫If(t)dt ∫ I f ( t ) d t converge. Si ∫If(t)dt ∫ I f ( t ) d t converge sans que f ne soit intégrable sur I , alors on parle d'intégrale semi-convergente.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
Dans ce cas, on note ∫+∞af(t)dt ∫ a + ∞ f ( t ) d t ou ∫+∞af ∫ a + ∞ f cette limite. Une telle intégrale est alors appelée intégrale généralisée ou intégrale impropre. Soit f:[a,b[→K f : [ a , b [ → K continue par morceaux avec a,b∈R a , b ∈ R .
Soit f une fonction de deux variables réelles à valeurs réelles et soit D un sous ensemble de R2. On dit que f est continue sur (l'ensemble) D si et seulement si elle est continue en chacun des points de D. f + g est continue en (x0, y0). fg est continue en (x0, y0).
Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.
Notion de continuité
On dit qu'une fonction f est continue en a si lim(x→a) f(x)= f(a). On dit qu'une fonction f est continue sur un intervalle I si pour tout x_0∈I lim(x→x0)f(x) = f(x0).
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Une fonction numérique f dГune variable réelle définie sur un intervalle I est dite de classe 1 C si elle est dérivable sur cet intervalle et si sa dérivée 'f est continue sur cet intervalle. a) Si f et g sont deux fonctions de classe 1 C sur un intervalle I alors les fonctions f g et f g sont de classe 1 C sur I .
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Définition : Soit une fonction réelle, localement intégrable sur un intervalle , avec ω ∈ R ou . On dit que l'intégrale ∫ a ω f ( t ) d t est absolument convergente si l'intégrale ∫ a ω | f ( t ) | d t est convergente.
Autrement dit, si une fonction est intégrable sur I=]a,b[ I = ] a , b [ , alors son intégrale sur I est convergente.
Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.
Qu'appelle-t-on une intégrale impropre ? Si sur un certain intervalle le domaine sous la courbe de la fonction est illimité, alors l'intégrale de sur cet intervalle est dite impropre. C'est le cas si au moins l'une des bornes d'intégration est ou .
Pour la dérivée en x c'est facile, tu dérives sous le signe intégrale (en justifiant que tu as le droit bien sûr B-)- ), et il suffit de voir que ∫x+sx−strucdt=∫x+s0trucdt−∫x−s0trucdt.
Pour déterminer une primitive d'une fonction rationnelle, on décompose celle-ci en une somme d'une fonction polynôme et d'une fonction inverse. Exemple : Soit f\left ( x \right )=\frac{x^{2}+2}{x-3} définie sur ]3\, ;+\infty[. Elle peut s'écrire sous la forme : f\left ( x \right )=ax+b+\frac{c}{x-3}.
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.
Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.
de classe C∞ si f est Ck sur I pour tout k≥1 k ≥ 1 . Autrement dit, si f est indéfiniment dérivable sur I .
Dérivabilité et continuité
La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.