Théorème de Pythagore — Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. En particulier, la longueur de l'hypoténuse est donc toujours supérieure à celle de chaque autre côté.
Remarque L'hypoténuse est le côté le plus long du triangle. Théorème: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des c carrés des longueurs des deux autres côtés.
Énoncé du théorème de Pythagore:
Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés.
Si par exemple le sommet de l'angle droit est A et le coté [BC] l'hypoténuse alors la relation de Pythagore s'écrit:BC²=AB²+AC² . donc ,le th. de Pyth. met en relation les longueurs des cotés dans un triangle rectangle et il permet de calculer l'une de ses longueurs à partir des deux autres .
Lorsque, dans un triangle quelconque, on connaît les longueurs a et b de deux côtés ainsi que l'angle adjacent à ces deux côtés, on peut calculer la longueur c du troisième côté en utilisant le théorème d'Al-Kashi. On considère le triangle ABC suivant tel que b = 2, c=4 et \widehat{A}= \dfrac{\pi}{4}.
La formule de l'aire d'un triangle est : Aire d'un triangle = (Base × hauteur) : 2 soit : A = (B × h) : 2.
Réciproque du théorème de Pythagore. Réciproque du théorème de Pythagore : Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A.
La formule simple permettant de calculer une cote à partir de la probabilité est C = P / (1 - P). La formule permettant de calculer la probabilité à partir de la cote est P = C / (C + 1).
Énoncé de la Réciproque de Pythagore:
Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle est rectangle.
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
La ligne jaune (appelée diagonale) se calcule par le théorème de Pythagore et est égale à la racine carrée de (a²+b²).
La diagonale d'un carré est ce segment qui joint deux arêtes non consécutives de la figure. Ainsi, chaque carré a deux diagonales. Pour le dire autrement, les diagonales joignent un sommet avec celui qui est obliquement opposé.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
La relation de Pythagore met en relation les trois côtés du triangle rectangle de la manière suivante : La somme des carrés des mesures des cathètes est égal au carré de la mesure de l'hypoténuse.
Par exemple, il permet : de calculer la longueur de l'hypoténuse à partir des longueurs des deux autres côtés, de vérifier la présence d'un angle droit dans un triangle, à un GPS de calculer la distance qui sépare une voiture ou un téléphone de la ville de Limoges, par exemple, etc.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Le théorème de Pythagore
Ainsi, l'on peut calculer l'une des longueurs du triangle rectangle en fonction des deux autres. Pour un triangle rectangle dont l'on nomme les côtés A, B et C, cela donne la formule : A² + B² = C².
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c2 = a2 + b2, où c est l'hypoténuse (le côté opposé à l'angle droit). Inversez le théorème pour résoudre a2 , c'est-à-dire a2 = c2 - b2 .
Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400. On constate que BC² =AC²+AB².
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.