Le triangle quelconque a trois cotés de longueurs différentes. Le triangle isocèle a deux cotés de même longueur. Le triangle équilatéral a ses trois cotés de même longueur. Le triangle rectangle a un angle droit.
ABC est un triangle équilatéral : il a trois côtés égaux ; il a trois angles égaux ; il a trois axes de symétrie.
Théorème de Pythagore — Si un triangle ABC est rectangle en C, alors AB2 = AC2 + BC2. Triangle ABC rectangle en C avec les notations AB = c, AC = b et BC = a. Par contraposée : Théorème — Si AB2 n'est pas égal à AC2 + BC2 alors le triangle n'est pas rectangle en C.
Soit C le cercle circonscrit au triangle ABC et \left[BC\right] un diamètre de C. Quelle est la nature du triangle ABC ? C'est un triangle rectangle. C'est un triangle isocèle.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
En géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base.
Retenir Un triangle équilatéral est un triangle qui possède trois côtés de même longueur : il est isocèle en chacun de ses sommets. Propriété : Un triangle équilatéral possède toujours trois axes de symétrie : ce sont les médiatrices de chaque côté.
Un triangle isocèle a deux angles de même mesure. Un triangle avec deux angles de même mesure est un triangle isocèle. Un triangle isocèle a au moins deux côtés de la même longueur. Un triangle équilatéral a trois côtés de la même longueur.
Si AB² = AC² + BC² alors le triangle ABC est rectangle en C. Si AB² n'est pas égal à AC² + BC² alors le triangle n'est pas rectangle en C. En effet, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Théorème : Si le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle. Si le carré de l'hypoténuse n'est pas égal à la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle. I. Le théorème de Thales pour calculer une longueur - sens direct.
Un angle aigu est un angle qui mesure moins de 90°. Un angle droit est un angle qui mesure 90°. Un angle obtus est un angle qui mesure plus de 90°.
1. Quadrilatère plan qui possède quatre angles droits ; surface limitée par ce quadrilatère. (Un parallélogramme est un rectangle s'il a un angle droit ou si ses diagonales [segments] ont même longueur. Les médiatrices de deux côtés consécutifs d'un rectangle sont ses axes de symétrie.)
Triangle rectangle d'angles 30° - 60° - 90° avec une hypoténuse de longueur 1. Le demi-triangle équilatéral a pour angles 90°, 60° et 30°. C'est le seul triangle rectangle dont les angles suivent une progression arithmétique.
a. Quelle est la nature du triangle TAG ? Justifie. Le codage indique que TA TG donc TAG est un triangle isocèle en T.
Un triangle isocèle est un triangle qui a deux côtés égaux et deux angles égaux.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
L'hypoténuse d'un triangle rectangle est le côté qui est en face de l'angle droit. C'est le plus long des trois côtés du triangle.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
La somme des mesures des angles d'un triangle est égale à 180°. La somme des mesures des angles d'un triangle est égale à 180°.
Un triangle est un polygone particulier possédant trois côtés. La somme de ses angles vaut 180 ° 180\degree 180°. Un polygone est une figure géométrique fermée délimitée par différents segments. Un polygone est dit régulier si l'ensemble de ses angles sont égaux les uns aux autres.