Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10. En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance. C'est ainsi que 98 sera divisé par 64 et vous ne retiendrez que la partie entière du quotient.
La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté.
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
On convertit chaque chiffre de la base 8 en un groupe de 3 chiffres en base 2. remarque: on n'écrirait pas les deux premiers 0, on écrirait 1 100 111, 010 011 001 101 (base 2). Pour convertir de base 2 en base 8, on forme des groupes de 3 chiffres à partir de la virgule et on les écrit en base 8.
Les Chiffres et les Nombres en Binaire de 0 à 1000 – : 0=0 en binaire, 1=1, 2=10, 3=11, 4=100, 5=101, 6=110, 7=111, 8=1000, 9=1001, 10=1010, …, 20=1 0100, …, 30=1 1110, …, 40=10 1000, …, 64=100 0000, …, 100=110 0100, 101=110 0101, …, 128=100 0000, …, 256=1 000 0000, …, 500=1 1111 0100, …, 512=10 0000 0000, …, 1000=11 ...
L'algorithme de conversion de la base 10 à la base 16 est très proche de celui de la conversion de décimal à binaire. Prenons un exemple : 5869=366×16+13 5869 = 366 × 16 + 13 reste = 13. 366=22×16+14 366 = 22 × 16 + 14 reste = 14.
En base 10 → 10 chiffres En base 3 → 3 chiffres (0,1,2). Dans une base « B », les chiffres ont tous une valeur inférieure à « B ». Ex : en base 5, les chiffres utilisés sont 0, 1, 2, 3, 4. La suite des nombres de la base 5 sera donc : 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, etc.
Méthode systématique : de droite à gauche
Ce chiffre en position 0 a un poids égal à la base exposant zéro = B0 = 1 = l'unité. En divisant à nouveau le quotient de la division précédente par la base on obtient le chiffre de position 1 dont le poids est B1 = la base.
le compte sur les dix doigts est très intuitif ainsi que cela a été mentionné ci-dessus ; son ordre de grandeur est satisfaisant, car il permet de réduire considérablement la longueur d'un grand nombre par rapport à la base 2, tout en conservant des tableaux d'additions et de multiplications mémorisables.
Conversion binaire-décimal
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimal, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul. Le résultat sera la juxtaposition des restes. Le bit de poids fort correspondant au reste obtenu à l'ultime étape de la division.
Pour convertir un nombre binaire en base 16, on regroupe les bits 4 à 4, chaque groupe donnant un chiffre hexadécimal. À l'inverse, passer d'un nombre hexadécimal à sa représentation binaire se fait en remplaçant chaque chiffre pour son équivalent sur 4 bits.
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
En base 10 (la numération décimale), on utilise donc 10 chiffres, soit de 0 à 9 , tandis qu'en base 2 (la numération binaire), on n'utilise que 2 chiffres, c'est-à-dire le zéro (0) et le un (1) .
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Le grand avantage du système hexadécimal réside dans son format compact, car la base 16 signifie qu'il faut moins de chiffres pour représenter un nombre donné qu'en format binaire ou décimal. En outre, il est relativement simple et rapide de convertir les chiffres hexadécimaux en chiffres binaires et inversement.
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers. En base deux, pour décrire l'entier 1101, on pourra écrire : 1 unité, 0 deuzaine, 1 quatraine, 1 huitaine.
Parce que c'est un système simple, qui limite les erreurs. Un “ chiffre informatique ”, appelé bit (pour BInary digiT), ne peut prendre que deux valeurs : 0 et… Parce que c'est un système simple, qui limite les erreurs.
1) Codage d'un entier relatif sur 8 bits.
Le bit de poids le plus fort (à gauche) sert à coder le signe de l'entier. Il reste donc 7 bits pour coder le nombre soit des valeurs entre -128 et 127. Exemple : Codage de 89 sur 8 bits 01011001. On va représenter 89 par 256 (28) -89=167.
Le système octal est quelquefois utilisé en calcul à la place de l'hexadécimal. Il possède le double avantage de ne pas requérir de symbole supplémentaire pour ses chiffres et d'être une puissance de deux pour pouvoir grouper les chiffres.