D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A.
► La réciproque du théorème de Pythagore
Si les côtés d'un triangle ABC vérifient l'égalité BC2 = AB2 + AC2, alors le triangle ABC est rectangle en A et le côté [BC] est l'hypoténuse de ce triangle.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Nous allons prouver le théorème de Pythagore : Définition : dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (appelés cathètes). Ainsi, soient a et b les cathètes et c l'hypothénuse, on a a 2 + b 2 = c 2 .
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. une symétrie axiale conserve l'orthogonalité. une symétrie centrale conserve l'orthogonalité.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Par exemple, il permet : de calculer la longueur de l'hypoténuse à partir des longueurs des deux autres côtés, de vérifier la présence d'un angle droit dans un triangle, à un GPS de calculer la distance qui sépare une voiture ou un téléphone de la ville de Limoges, par exemple, etc.
Calculer la longueur d'un côté avec le théorème de Pythagore
Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux côtés de l'angle droit.
Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC². En utilisant le cosinus, le sinus ou la tangente d'un angle aigu d'un triangle rectangle.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Grâce au cercle circonscrit
Si un triangle est inscrit dans un cercle et a pour côté un diamètre de ce cercle alors ce triangle est rectangle.
Une contraposée se présente comme : "Si non B alors non A". Logique ! Si la conséquence est fausse alors il n'y a pas de cause. Dans le théorème, la partie A est "Si un triangle est rectangle" et la partie B est "alors le carré de l'hypoténuse est égal à la somme des carrés des 2 autres côtés".
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle. Si un parallélogramme a un angle droit alors c'est un rectangle.
La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y . Elle se note f−1 . On obtient le graphique d'une réciproque en faisant subir à notre fonction une réflexion par rapport à l'axe y=x .
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse. Exemple et notation : sin a = BC AB .
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.