Considérons un triangle ABC tel que AB = 3 cm, BC = 4 cm et AC = 5 cm. Pour prouver que ce triangle est rectangle, nous pouvons utiliser la propriété de Pythagore : si AB² + BC² = AC², alors le triangle est rectangle.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse. Exemple et notation : sin a = BC AB .
Deux triangles ayant une même base et une même hauteur possèdent une aire identique. Un triangle rectangle ne peut pas avoir deux droites parallèles. Il possède uniquement deux droites perpendiculaires. De même pour le triangle rectangle isocèle.
À l'aide du cercle circonscrit
Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce diamètre est son hypoténuse. Soit \Gamma le cercle circonscrit au triangle ABC et AB un diamètre de \Gamma.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle.
AB2+BC2=AC2 A B 2 + B C 2 = A C 2 donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.
► La réciproque du théorème de Pythagore
Si les côtés d'un triangle ABC vérifient l'égalité BC2 = AB2 + AC2, alors le triangle ABC est rectangle en A et le côté [BC] est l'hypoténuse de ce triangle.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Si un triangle est inscrit dans un cercle et que l'un des côtés du triangle est un diamètre du cercle, alors le triangle est rectangle.
Si vous connaissez la longueur du plus grand côté (situé à l'opposé de l'angle à 60 degrés), multipliez cette longueur par 2/√(3) pour obtenir la longueur de l'hypoténuse. Ainsi, si le plus grand côté est de 4, l'hypoténuse sera de 4,62 (4 x 2/√(3)).
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Par les aires des triangles semblables
Les aires des trois triangles semblables AHC, CHB et ACB, portées par les côtés AC, CB et AB sont proportionnelles aux carrés de ces côtés. L'égalité précédente donne donc le théorème de Pythagore, en simplifiant par le coefficient de proportionnalité : AC2 + BC2 = AB2.
Le théorème pourra s'appliquer seulement dans deux cas (voir le schéma ci-dessous) : Deux droites sécantes et deux droites parallèles viennent former deux triangles distincts, reliés entre eux par un sommet.
Selon le théorème de Pythagore, le carré de l'hypoténuse est égal à la somme des carrés des longueurs des côtés à angle droit (les jambes).
Qu'est ce que l'hypoténuse d'un triangle rectangle ? Définition : Dans un triangle rectangle, l'hypoténuse est le côté opposé à l'angle droit.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
Les propriétés des triangles
Dans n'importe quel triangle, le côté le plus long est opposé à l'angle le plus grand. Par le fait même, le côté le plus petit est opposé à l'angle le plus petit. Ainsi, la longueur du côté d'un triangle influence la mesure de l'angle qui lui est opposé.
Triangle rectangle
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.
Si deux droites sont parallèles et si une 3ième droite est perpendiculaire à l'une alors elle est perpendiculaire à l'autre. Si un triangle est rectangle alors il a un angle droit. Si une droite est la médiatrice d'un segment alors elle est perpendiculaire à ce segment.