– Exemple 1 : Dans un triangle rectangle dont les côtés mesurent 3 cm, 4 cm et 5 cm, l'angle formé par les côtés de 3 cm et 4 cm est droit. Cela est démontré en utilisant le théorème de Pythagore : 3² + 4² = 5². – Exemple 2 : Dans un cercle dont l'arc mesure 90 degrés, l'angle inscrit dans cet arc est droit.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Pour mesurer un angle, on utilise un rapporteur. La plupart des rapporteurs sont gradués en degré (°) avec une double graduation : de 0 à 180° de gauche à droite sur la graduation extérieure ; et de 0 à 180° de droite à gauche sur la graduation intérieure.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Par les aires des triangles semblables
Les aires des trois triangles semblables AHC, CHB et ACB, portées par les côtés AC, CB et AB sont proportionnelles aux carrés de ces côtés. L'égalité précédente donne donc le théorème de Pythagore, en simplifiant par le coefficient de proportionnalité : AC2 + BC2 = AB2.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152.
Propriété 4b: Si un triangle est isocèle, alors ses angles à la base ont même mesure.
Les 3 options pour mesurer un angle de mur
La première est d'utiliser une fausse équerre qu'il faut mettre dans le coin des deux murs pour déterminer l'angle de ces derniers. Une fois la valeur des angles des deux murs obtenus, on peut avoir la valeur de l'angle du coin intérieur avec le rapporteur d'angle.
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Angle dans un plan dont la mesure en degrés est égale à 0. Les deux demi-droites, formant les côtés d'un angle nul, sont confondues.
La méthode 3-4-5 ou le triangle 3-4-5 consiste à utiliser le théorème de Pythagore pour obtenir un triangle rectangle parfait. Pour cela, il vous faut 3 piquets, 3 pointes de 50 mm, un cordeau assez long et un décamètre. En théorie, la formule de Pythagore est la suivante : hypoténuse² = côté A² + côté B².
Un angle droit est le nom donné à l'angle entre deux demi-droites perpendiculaires. Sa mesure en degré vaut 90°.
Passons aux explications : Les 3 angles du haut de la figure a, b et c forment un angle dit “plat”. C'est à dire que la somme des angles a, b et c fait 180° : a + b + c = 180°. On fait ensuite le même raisonnement avec c et e : l'angle a en haut à droite est le même que l'angle e en bas à droite.
Deux angles ayant le même sommet, un côté commun et situés de part et d'autre de ce côté sont adjacents. Deux angles symétriques par rapport à leur sommet commun sont opposés par le sommet. Deux angles opposés par le sommet ont la même mesure.
Quel que soit le triangle, la somme des mesures des trois angles est toujours égale à 180°.
Marquez un point sur un mur à 100 cm de l'angle sur une ligne horizontale. Puis marquez un second point, toujours à 100 cm de l'angle sur la même ligne horizontale mais sur l'autre mur, La distance entre les deux point doit mesurer 141 cm si votre angle est bien un angle droit.
Avec la reciproque de Thalès on peut savoir si les deux droites sont parallèles. Mais seulement si les cotes des triangles sont proportinnels deux a deux. Pythagore ce n'est qu'avec un triangle rectangle, il sert a connaitre la mesure d'un côté.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.