Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
Résoudre une inéquation consiste à trouver l'ensemble des valeurs par lesquelles on peut remplacer la variable pour obtenir une inégalité vraie. Par exemple : La solution x=1 est une des solutions de l'inégalité 2x+1<5, car en la remplaçant dans cette dernière on obtient 2×1+1<5 qui est une inégalité vraie.
Pour résoudre une inéquation du second degré, il faut trouver les racines de la forme quadratique dans le membre de gauche. Pour ce faire, nous pouvons factoriser, mettre le membre de gauche sous forme canonique ou utiliser la formule quadratique.
On transforme une inéquation en une inéquation équivalente en changeant le sens de l'inégalité: En multipliant ou divisant les 2 membres par un même nombre strictement négatif à la condition de changer le sens de l'inégalité.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection.
Pour cela, il faut faire disparaitre le "2x" à droite. On va donc soustraire 2x de chaque côté de l'inégalité. On doit alors diviser par -3 de chaque côté de l'inéquation pour isoler le x. Cela implique que l'on doit changer le sens de l'inégalité.
Résoudre une inéquation, c'est trouver toutes les valeurs de x qui vérifient cette inégalité. Il s'agit d'un ensemble de valeurs. Les solutions sont tous les nombres strictement inférieurs à . L'ensemble des solutions de l'inéquation est donc l'intervalle : −∞ ; .
Résoudre graphiquement une inéquation du type f(x) < k, c'est trouver les abscisses des points de la courbe d'ordonnée strictement inférieure à k. De la même manière : Résoudre l'inéquation f(x) ≤ k, c'est trouver les abscisses des points de d'ordonnée inférieure ou égale à k.
Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes. Son usage permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois ou celle des nombres algébriques.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Pour une équation du second degré sous la forme ax2 + bx + c, le discriminant est la valeur b2 - 4ac. En calculant le discriminant, détermine le nombre de solutions réelles de l'équation 3x2 + 9. En calculant le discriminant, détermine le nombre de solutions réelles de l'équation 4x2 + 4x + 1.
Pour résoudre une inéquation comportant des carrés, on transpose tous les termes dans un seul membre et on factorise, si possible, en un produit de facteurs du premier degré. On peut alors en déduire l'ensemble des solutions à l'aide d'un tableau de signes.
Méthodes de résolution d'inéquations du 1er degré
Pour résoudre une inéquation du premier degré d'inconnue , on commence d'abord par développer et réduire les deux expressions à gauche et à droite. On transpose les termes en à gauche et les termes constants à droite pour obtenir une forme réduite a x < − b .
Pour résoudre l'inéquation graphiquement, nous allons tracer un graphique de 𝑓 ( 𝑥 ) = 2 𝑥 − 1 5 𝑥 + 2 7 . Pour ce faire, il nous faut d'abord trouver les points d'intersection de la courbe avec l'axe des 𝑥 a x e d e s , que l'on appelle souvent racines de l'équation.
Il faut inverser le signe d'inégalité si on multiplie ou on divise par un nombre négatif.
Une équation est une égalité entre deux expressions littérales contenant une ou plusieurs inconnues. Une inéquation est une inégalité entre deux expressions littérales contenant une ou plusieurs inconnues.
Multiplications et divisions. - On ne change pas le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre positif. - On change le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre négatif.
L'ensemble des solutions du système est : = 1 ∩ 2. dans ℝ, on procède comme suit : • on nomme l'inconnue ; on met le problème en équation ou en inéquation ; • on résout l'équation ou l'inéquation ; • on conclut en interprétant le résultat trouvé.
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac. Avant d'aller plus loin, voyez si vous maîtrisez convenablement ce calcul de discriminant.
permet de mieux comprendre les coniques et les quadriques en général. On le retrouve dans l'étude des formes quadratiques ou celle des corps de nombres dans le cadre de la théorie de Galois (En mathématiques et plus précisément en algèbre, la théorie de Galois est...) ou celle des nombres algébriques.
Définition : On appelle discriminant du trinôme ax2 + bx + c , le nombre réel, noté A, égal à b2 − 4ac . Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2.
C'est donc une équation du second degré. Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.