Parmi les trapèzes particuliers, on trouve le trapèze isocèle dont les côtés non parallèles sont de même longueur et le trapèze rectangle qui possède deux angles droits.
Le carré, le losange et le rectangle sont des quadrilatères particuliers car ils ont les côtés opposés parallèles 2 à 2. Elles se coupent en leur milieu, ont la même longueur. Elles se coupent en leur milieu, ont la même longueur et sont perpendiculaires.
- Si un quadrilatère a ses côtés opposés parallèles deux à deux alors c'est un parallélogramme. - Si un quadrilatère a ses côtés opposés deux à deux de même longueur alors c'est un parallélogramme. - Si un quadrilatère a deux de ses côtés opposés parallèles et de même longueur alors c'est un parallélogramme.
On détermine donc si le quadrilatère est un trapèze. Si ce n'est pas le cas, on conclut que la figure est un quadrilatère quelconque. Un quadrilatère non croisé est un trapèze si et seulement si deux de ses côtés sont parallèles.
Quadrilatère limité par une ligne simple et dont tous les angles intérieurs sont saillants. Un quadrilatère est non convexe si l'un de ses angles intérieurs est rentrant.
Un quadrilatère est concave (non convexe) si l'un de ses angles intérieurs est rentrant.
Un polygone est convexe si tout segment qui relie deux points intérieurs se trouve entièrement dans ce polygone. Dans un polygone concave, au moins un segment joignant deux de ses points se trouve, en tout ou en partie, à l'extérieur de sa surface.
Si un quadrilatère a trois angles droits, Alors ce quadrilatère est un rectangle. Ce quadrilatère est un rectangle. Les diagonales du quadrilatère se coupent en leur milieu.
Un quadrilatère convexe est un trapèze si et seulement s'il possède une paire d'angles consécutifs de somme égale à 180°, soit π radians. La somme des deux autres angles est alors la même. Par exemple dans la figure ci-dessus, les deux paires d'angles ont pour sommets (A,D) et (B,C).
Un trapèze rectangle possède deux angles droits consécutifs et une paire de côtés opposés parallèles qui sont nommés « petite base » et « grande base » en raison de leur longueur différente.
I) Le parallélogramme.
On peut commencer par démontrer que le quadrilatère est un rectangle ou un losange. Si un rectangle a deux côtés consécutifs de même longueur, alors c'est un carré. Exemple : sur la figure 4, le quadrilatère ABCD est un rectangle puisqu'il a trois angles droits ; de plus, AB = BC = 3 cm ; ABCD est donc un carré.
Les côtés [AB] et [CD] sont donc parallèles et de même longueur. On en déduit que le trapèze ABCD est un parallélogramme.
Si les diagonales d'un quadrilatère ont le même milieu alors ce quadrilatère est un parallélogramme. Si deux cotés opposés d'un quadrilatère sont parallèles et de même longueur alors ce quadrilatère est un parallélogramme. Si un quadrilatère a un centre de symétrie alors c'est un parallélogramme.
Pour nommer ce quadrilatère, il faut citer les sommets dans l'ordre où ils apparaissent en parcourant le quadrilatère. Différents noms possibles : ABCD, BCDA, DCBA, … mais pas ABDC. Le mot vient du gaulois lausa = pierre plate Les lauzes recouvrent encore les toits de quelques maisons anciennes.
Il existe plusieurs types d'angles : l'angle aigu, l'angle obtus, l'angle rentrant ou l'angle saillant. Certains angles particuliers : l'angle droit, l'angle plat et l'angle nul.
les diagonales ont le même milieu ; les côtés opposés sont parallèles ; les côtés opposés ont la même longueur ; deux côtés opposés sont parallèles et ont la même longueur.
Propriété : Si un quadrilatère est un parallélogramme et a deux côtés consécutifs de même longueur alors c'est un losange. Propriété : Si un quadrilatère est un parallélogramme et a ses diagonales perpendiculaires alors c'est un losange.
Le triangle isocèle rectangle est aussi appelé demi-carré avec un angle principal de 90°.
Un Trapèze, qui a des diagonales de même longueur, est un Trapèze isocèle ; Un Parallélogramme, qui a des diagonales de même longueur est un Rectangle ; Un Losange, qui a des diagonales de même longueur, est un Carré.
Propriétés du parallélogramme
Les diagonales se coupent en leur milieu. Le centre du parallélogramme est le centre de symétrie. Les côtés opposés sont parallèles. Les côtés opposés sont de même longueur.
Une fonction convexe possède une dérivée première croissante ce qui lui donne l'allure de courber vers le haut. Au contraire, une fonction concave possède une dérivée première décroissante ce qui lui donne l'allure de courber vers le bas.
Pour être un polygone, une figure géométrique doit être constituée de segments formant une ligne brisée fermée. C'est pourquoi un cercle n'est pas un polygone, la ligne qu'il dessine n'est pas brisée, elle est courbe.
Les côtés parallèles d'un trapèze sont appelés les bases du trapèze. Dans le cas général où le quadrilatère ne comporte qu'une seule paire de côtés parallèles, ceux-ci sont appelés la petite base et la grande base.