On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
Les vecteurs ⃑ 𝐴 et ⃑ 𝐵 sont parallèles si, et seulement si, ce sont des multiples scalaires l'un de l'autre : ⃑ 𝐴 = 𝑘 ⃑ 𝐵 , où 𝑘 est un nombre réel non nul.
2) Les vecteurs u, v et w sont non coplanaires ssi ils forment une base de l'espace, c'est à dire ssi au+bv+cw=0 implique a=b=c=O. Donc, on peut écrire le système d'équation à trois inconnues orrespondant à au+bv+cw=0. S'il a une solution non triviale, les vecteurs sont coplanaires, sinon ils ne le sont pas.
Il faut commencer par montrer que l'intersection de ces deux plans est une droite ! Un vecteur normal à (P) est : . Un vecteur normal à (Q) est : Il n'existe pas de réel k tel que 1xk=2 et (-1)xk=1 donc ces deux vecteurs ne sont pas colinéaires.
Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Deux vecteurs ⃗ u (x;y) et ⃗ v (x′;y′) sont colinéaires si et seulement si : Méthode 1 : x × y ′ − x ′ × y = 0 x\times y' - x'\times y=0 x×y′−x′×y=0. Méthode 2 : il existe une réel k tel que : x ′ = k x x'=kx x′=kx et y ′ = k y y'=ky y′=ky.
Définition 1.
Deux droites ont la même direction si et seulement si elles sont parallèles ou confondues. On dit que deux vecteurs et sont colinéaires lorsqu'ils ont la même direction. Par conséquent, deux droites qui n'ont pas la même direction sont sécantes.
P et P' n'ont aucun point en commun et sont donc parallèles. Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan.
Trois vecteurs sont coplanaires si et seulement si on peut trouver trois représentants de ces vecteurs situés dans un même plan. Attention, le fait qu'initialement les premiers représentants choisis ne soient pas dans un même plan n'empêche absolument pas les vecteurs d'être coplanaires.
Propriétés : Les points A, B et C sont alignés si et seulement si les vecteurs ⃗ AB et ⃗ AC sont colinéaires. Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ⃗ AB et ⃗ CD sont colinéaires.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Si leur produit scalaire est nul, les droites \left(d\right) et \left(d'\right) sont parallèles. Le produit scalaire \overrightarrow{n}. \overrightarrow{u} étant nul, les droites \left(d\right) et \left(d'\right) sont parallèles.
Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Deux vecteurs non nuls sont égaux lorsqu'ils ont même direction, même sens et même longueur. Théorème : Soient A, B, C, D quatre points du plan.
Pour montrer qu'un point appartient à un plan donné par une équation cartésienne, on s'assure que ses coordonnées vérifient l'équation. Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t′.
La norme du vecteur 𝐯 peut donc être trouvée en utilisant le théorème de Pythagore. D'après ce théorème, la longueur de l'hypoténuse est égale à la somme des carrés des deux côtés les plus courts. La norme de 𝐯 est donc égale à la racine carrée de 𝑎 au carré plus 𝑏 au carré.
Les vecteurs ⃗ u et ⃗ v sont colinéaires si et seulement si l'un est le produit de l'autre par un réel, c'est-à-dire s'il existe un réel k tel que ⃗ ⃗ v =ku . Le réel k est le coefficient de colinéarité. Ainsi, deux vecteurs non nuls sont colinéaires lorsqu'ils ont la même direction.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Deux droites parallèles sont deux droites qui ne sont pas sécantes Exemple : Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites sont parallèles lorsqu'elles ne se coupent pas.
Deux droites sont sécantes si elles ont un point d'intersection (point commun où les droites se croisent). Les droites (d1) et (d2) sont sécantes. Le point d'intersection des 2 droites est le point A.
Propriété : Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.
Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Définition (Produit scalaire) On dit que l'application f : E × E → R est un produit scalaire si : (a) ∀(u, u , v, v ) ∈ E4, ∀(α, β) ∈ R2, f(αu + βu ,v) = αf(u, v) + βf(u ,v) : on dit que f est linéaire `a gauche.