Deux grandeurs sont proportionnelles quand on obtient les valeurs de l'une en multipliant par le même nombre – autre que 0 – toutes les valeurs de l'autre. Le nombre qui permet de passer d'une suite de nombres à l'autre s'appelle le « coefficient de proportionnalité ».
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
Définition : Deux grandeurs sont proportionnelles si on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité. Exemple : La masse d'un morceau de viande et son prix.
Situation de non-proportionnalité
C'est une situation où les deux grandeurs ne sont pas proportionnelles, c'est-à-dire si les valeurs de l'une s'obtiennent en multipliant ou en divisant les valeurs de l'autre par différents opérateurs.
Autres méthodes Autres méthodes • Il suffit de contrôler que les propriétés de la proportionnalité sont respectées : linéarité, rapports, égaux, écarts, produit en croix, ordre et propriété graphique. Si une seul de ces propriétés n'est pas respectée, alors la suite n'est pas proportionnelle.
Deux grandeurs (ou listes de nombres) sont proportionnelles lorsque l'on peut obtenir la deuxième à partir de la première en la multipliant par un même nombre, que l'on appelle coefficient de proportionnalité.
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Pour trouver une quatrième proportionnelle, on écrit les produits en croix égaux, c'est-à-dire : 24 × 12 = 15 × x. On considère l'égalité suivante : \frac{9}{8} = \frac{x}{10}. Quelle est la valeur du nombre x ? Les produits en croix sont égaux, donc 90 = 8 × x ou encore 90 ÷ 8 = x soit x = 11,25.
pour résoudre un problème de partages inégaux proportionnels : - on fait la somme des nombres ou des grandeurs qui servent de base au partage ; - on calcule chaque part par une règle de trois dont le diviseur est la somme trouvée précédemment.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Dans un tableau de proportionnalité, on peut additionner les valeurs de deux colonnes pour obtenir celles d'une troisième colonne. Ainsi, en constatant que 5 = 2 + 3, on en déduit que la valeur de la deuxième ligne de la troisième colonne est la somme de 7 et de 10,7 soit 17,5.
Deux grandeurs sont proportionnelles si, lorsqu'une grandeur augmente, l'autre augmente dans la même proportion. Cela signifie qu'elles ont le même multiplicateur.
1- Qu'est-ce qu'une situation de proportionnalité ? Quand on peut passer d'une série de nombres à une autre, en multipliant ou en divisant par un même nombre, c'est une situation de proportionnalité.
Pour vérifier si un tableau est un tableau de proportionnalité, il suffit donc de vérifier que les quotients obtenus en divisant les nombres de la deuxième ligne par les nombres de la seconde ligne (ou inversement) sont égaux pour chaque colonne.
On peut également trouver les chiffres manquants d'un tableau de proportionnalité en utilisant le produit sur une colonne. Ainsi pour passer de la colonne 1 à 2, il faut multiplier par 3. Si on multiplie la première colonne par 3, on obtient 3, qui est bien le résultat de la seconde colonne.
pour résoudre un problème de partages inégaux proportionnels : - on fait la somme des nombres ou des grandeurs qui servent de base au partage ; - on calcule chaque part par une règle de trois dont le diviseur est la somme trouvée précédemment.
➔ Dans la proportion a/b = c/d, si a = d, soit lorsque a/b = c/a, on dit que a est moyenne proportionnelle de b et c. C'est dire que a2 = bc : c'est un cas particulier de moyenne géométrique.
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Si une droite est parallèle à un côté d'un triangle, alors les deux triangles formés ont des côtés proportionnels.