Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Définitions : - On appelle repère du plan tout triplet (O, ��⃗, ��⃗) où O est un point et ��⃗et ��⃗ sont deux vecteurs non colinéaires. - Un repère est dit orthogonal si ��⃗et ��⃗ ont des directions perpendiculaires. - Un repère est dit orthonormé s'il est orthogonal et si ��⃗et ��⃗ sont de norme 1.
Pour que deux vecteurs soient orthogonaux, leur produit scalaire doit être nul. Afin de trouver la solution, il suffit de trouver lequel de ces vecteurs ne donne pas un produit scalaire nul lorsqu'il est multiplié avec ( 2 ; − 3 ; 5 ) .
Si les deux vecteurs ⃑ 𝑢 et ⃑ 𝑣 sont perpendiculaires, alors l'angle 𝜃 = 9 0 ∘ . On peut utiliser cette information pour établir que si le produit scalaire de deux vecteurs est égal à 0, alors ces vecteurs sont perpendiculaires.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
I) Projeté orthogonal d'un point sur une droite de l'espace
Si la droite Δ admet pour vecteur directeur le vecteur →u, alors : →AH⋅→u=0. Si le projeté orthogonal du point A sur la droite Δ est le point H, alors la distance du point A à la droite Δ est : d(A ; Δ)=AH.
Repère orthogonal et orthonormal
Si les axes (OI) et (OJ) sont perpendiculaires, alors est un repère orthogonal. Si les axes (OI) et (OJ) sont perpendiculaires, et qu'en plus OI = OJ alors est un repère orthonormal (ou orthonormé).
Si les plans sont sécants, alors leurs vecteurs normaux ne sont pas colinéaires. De plus si →n1⋅→n2=0 alors les plans sont perpendiculaires. La réciproque est vraie: Si les plans sont perpendiculaires, alors leurs vecteurs normaux sont orthogonaux.
Soit u et v deux vecteurs de coordonnées u (xy) et v (x′y′). Alors u ⋅v =xx′+yy′. Exemple : Soit u et v deux vecteurs de coordonnées u (20,5) et v (3−4). Alors u ⋅v =2×3+0,5×(−4)=6−2=4.
Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Définition 10 Soit
sont orthogonaux si leur produit scalaire est nul.
à partir d'une équation cartésienne du plan. Si le plan a pour équation cartésienne ax+by+cz=d, alors un vecteur normal du plan est le vecteur de coordonnées (a,b,c).
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
En géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux.
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
Comment on calcule le produit scalaire ? Pour calculer un produit scalaire, il faut appliquer la bonne formule en fonction des données que nous avons. Si nous connaissons les composantes des vecteurs, nous utiliserons la formule u → ⋅ v → = u x v x + u y v y .
Pour la multiplication/division d'un vecteur par un nombre réel, il suffit de multipler/diviser les coordonnées. Exemples avec les points A(-4;6),B(-1;9),C(1;9) de la figure précédente : 2 AB → ( 2 ( x B - x A ) ; 2 ( y B - y A ) ⇒ 2 AB → ( 6 ; 6 )
Définition Comme dans le plan, des vecteurs de l'espace sont colinéaires si et seulement si ils ont la même direction, c'est à dire s'ils sont "parallèles".
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite.
On peut déterminer ses nouvelles coordonnées en commençant par tracer deux segments parallèles aux axes des abscisses et des ordonnées passant par le point 𝐶. D'après la définition du repère 𝐴 ; 𝑂, 𝐵, la longueur du segment 𝑂𝐴 est d'une unité sur l'axe des abscisses. Les coordonnées du point 𝐴 sont donc un, zéro.
Grâce à ce repérage, on peut ensuite manipuler ces objets : effectuer des symétries, résoudre des problèmes, ... On construit un repère à partir d'un point que l'on choisit (appelé origine du repère). À partir de ce point, on définit des axes, c'est-à-dire des droites graduées (comme des règles).
Un repère orthogonal est un repère où les axes sont perpendiculaires.