Pour savoir si →u, →v et →w sont coplanaires: On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires.
Les vecteurs \vec{u}, \vec{v} et \vec{w} sont coplanaires si, et seulement si, il existe deux nombres réels \lambda et \mu tels que \vec{w} = \lambda \vec{u} + \mu \vec{v}. Vocabulaire On dit que \vec{w} est une combinaison linéaire de \vec{u} et \vec{v}.
Trois vecteurs sont coplanaires si et seulement si on peut trouver trois représentants de ces vecteurs situés dans un même plan.
2) Les vecteurs u, v et w sont non coplanaires ssi ils forment une base de l'espace, c'est à dire ssi au+bv+cw=0 implique a=b=c=O. Donc, on peut écrire le système d'équation à trois inconnues orrespondant à au+bv+cw=0. S'il a une solution non triviale, les vecteurs sont coplanaires, sinon ils ne le sont pas.
Indice : En géométrie vectorielle, pour montrer que 4 points sont coplanaires, il faut montrer que trois des vecteurs qu'ils forment sont coplanaires. Pour ça, il faut exprimer un des trois vecteurs en fonction des deux autres.
Pour savoir si →u, →v et →w sont coplanaires:
Pour celà, on cherche 2 nombres a et b tels que →w=a→u+b→v. Si on peut trouver a et b alors →u, →v et →w sont coplanaires. Sinon →u, →v et →w ne sont pas coplanaires.
Proposition (Caractérisation de la colinéarité dans l'espace) Deux vecteurs de l'espace et sont colinéaires si et seulement si u → ∧ v → = 0 → .
« Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles ». « Trois points coplanaires sont toujours alignés ». « Trois points alignés sont toujours coplanaires ». « Quatre points non alignés forment toujours un plan ».
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
coplanaire
Se dit de points, de droites situés dans un même plan.
Des lignes, des segments ou des vecteurs sont coplanaires s'ils sont dessinés sur un plan ou sur des plans parallèles; ils sont tous horizontaux ou verticaux ou obliques de la même manière. Deux droites définies par les équations sont colinéaires si elles ont même coefficient directeur.
Solution détaillée. Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Trois points A, B et C sont alignés si et seulement si les vecteurs A B → \overrightarrow{AB} AB et A C → \overrightarrow{AC} AC sont colinéaires. C'est-à-dire : « A, B et C sont alignés si et seulement s'il existe un réel k tel que A C → = k A B → \overrightarrow{AC} = k \overrightarrow{AB} AC =kAB ».
Une base de l'espace est formée de trois vecteurs non coplanaires. Un repère de l'espace est constitué d'un point et d'une base de l'espace. La somme des vecteurs et est le vecteur dont les coordonnées sont la somme des coordonnées de et : . Soit k un réel quelconque.
On peut vérifier que ces deux vecteurs sont linéairement indépendants, donc ils forment une base de F. Si z − 3y + 3x = 0, il n'y a pas de solution. Si z − 3y + 3x = 0, on obtient un syst`eme triangulaire, il y a donc une unique solution. Conclusion : (x, y, z) ∈ F ⇐⇒ z − 3y + 3x = 0.
Une famille de vecteurs de E est une base de E si c'est une famille à la fois génératrice de E et libre. De façon équivalente, une famille est une base de l'espace vectoriel E quand tout vecteur de l'espace se décompose de façon unique en une combinaison linéaire de vecteurs de cette base.
Des vecteurs V 1 , … , V n sont linéairement dépendants s'ils possèdent une relation de dépendance linéaire, ∑ i = 1 n λ i V i = 0 (avec les non tous nuls). On peut dire aussi qu'ils forment une famille liée. Toute famille qui contient une famille liée est liée.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
3) Deux droites peuvent avoir exactement trois points communs. 4) Deux droites non perpendiculaires sont sécantes. ou parallèles le sont réellement.
deux plans sécants peuvent être orthogonaux. Ces plans n'étant pas parallèles, ils sont sécants. On peut donc également les qualifier de plans perpendiculaires. Deux plans sont perpendiculaires si et seulement si leurs vecteurs normaux sont orthogonaux.
Un repère (ou repère cartésien) de l'espace est un quadruplet ( O , e x → , e y → , e z → ) où est un point arbitrairement choisi comme origine et ( e x → , e y → , e z → ) trois vecteurs non coplanaires.
Deux droites sont sécantes si et seulement si leur intersection est un singleton. rappel . Deux droites sont coplanaires si et seulement si elle sont parallèles ou sécantes. Pour montrer que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni parallèles ni sécantes.
Remarques : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction. Le vecteur est colinéaire à tout vecteur du plan.