Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
Par exemple, si vous voulez comparer une moyenne observée à une valeur théorique : Vous souhaitez comparer la moyenne des notes en mathématiques d'une classe à la moyenne du pays ? Dans ce cas nous allons utiliser un test paramétrique car nous pouvons supposer que les données suivent une distribution normale.
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Les formulations pour l'hypoth`ese alternative H1 sont : 1. H0 : µ = µ0 (ou µ ≥ µ0) et 2. H0 : µ = µ0 (ou µ ≤ µ0) H1 : µ<µ0 H1 : µ>µ0 (unilatéral `a gauche).
En résumé, si la puissance statistique est assez importante (supérieure à 0.95 par exemple), on peut accepter H0 avec un risque proportionnel à (1 – puissance) d'avoir tort. Ce risque est appelé le risque Bêta.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Il s'agit d'une forme d'analyse de la régression dans lequel le prédicteur, ou fonction d'estimation, ne prend pas de forme prédéterminée.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
Les tests paramétriques sont des tests statistiques qui permettent de mesurer de degré d'association entre une variable quantitative et une variable catégorielle. Rappelons qu'une variable catégorielle est une variable qui différencie les individus en groupes.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
Le test du Chi2 consiste à mesurer l'écart entre une situation observée et une situation théorique et d'en déduire l'existence et l'intensité d'une liaison mathématique. Par exemple, en théorie il y a autant de chance d'obtenir « pile » que « face » au lancer d'une pièce de monnaie, en pratique il n'en est rien.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
Duncan en 1955. Ce test post-hoc ou test de comparaisons multiples peut être utilisé pour déterminer les différences significatives entre les moyennes des groupes dans une analyse de variance.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Le test de Kruskal-Wallis est une alternative non paramétrique au test ANOVA à un facteur. Il étend le test de Wilcoxon à deux échantillons dans les cas où il y a plus de deux groupes à comparer. Il est recommandé lorsque les hypothèses du test ANOVA, à un facteur, ne sont pas respectées.
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Le Test de Wilcoxon est un test de comparaison de deux séries d'une même variable quantitative (même unité de mesure). C'est un Test non paramétrique, utilisé quand les conditions de normalité de la variable ne sont pas valides. C'est l'équivalent du test T de Student.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
Un test est dit statistiquement significatif lorsque le risque quantifié de se tromper, nommé p-valeur, est inférieur à un niveau de signification alpha. Pour être plus précis, la valeur-p est la probabilité d'obtenir une donnée aussi extrême sous l'hypothèse nulle.
Test d'homogénéité : comparaison de plusieurs échantillons entre eux.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.