Un triangle avec deux angles de même mesure est un triangle isocèle. Un triangle isocèle a au moins deux côtés de la même longueur. Un triangle équilatéral a trois côtés de la même longueur.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°. Plus précisément, on peut dire que le triangle est rectangle isocèle en A.
Comment prouver qu'un triangle est isocèle sans mesure ? Une méthode consiste à utiliser la propriété des angles d'un triangle isocèle, qui stipule que deux angles d'un triangle isocèle sont égaux. Si l'on peut prouver que deux angles d'un triangle sont égaux, alors le triangle est isocèle.
Un triangle ABC, dont le sommet est A, est isocèle si les côtés adjacents au point A sont égaux, soit AB=AC. Ainsi BC représente la base du triangle.
1 sommet principal
Le sommet commun aux 2 côtés de même longueur est le sommet B. On dit que le triangle ABC est isocèle en B. On sait alors que les 2 côtés issus du sommet B, [BA] et [BC], sont de même longueur.
Cas d'un triangle isocèle :
Dans tout triangle isocèle, les deux angles à la base sont égaux. Donc \hat{U} = \hat{I} = 47°. On en déduit \hat{O} : \hat{O} = 180° – (47° + 47°) = 86°.
Aire = (base fois hauteur) divisé par deux
Remarque : les longueurs doivent être exprimées dans la même unité de longueur.
Triangle isocèle
Il suffit de soustraire de 180° la mesure de l'angle du sommet principal, puis de diviser le résultat par 2. Dans ce triangle isocèle, A est le sommet principal et [BC] est la base. Chaque angle à la base doit mesurer 63° pour que la somme des angles soit égale à 180°. 54° + 63° + 63° = 180°.
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Propriété 4b: Si un triangle est isocèle, alors ses angles à la base ont même mesure.
triangle ayant deux côtés de même longueur et, par conséquent, les angles à la base de même mesure.
Caractérisation par les longueurs de deux médianes, de deux hauteurs ou deux bissectrices. Un triangle est isocèle si et seulement s'il possède deux médianes (segments), ou deux hauteurs (segments), ou deux bissectrices (segments) de même longueur.
D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC².
Pour calculer la longueur de l'hypoténuse, le théorème de Pythagore est appliqué. Ce théorème stipule que: dans un triangle rectangle le carré construit sur l'hypoténuse est toujours équivalent à la somme des carrés construits sur les cathets. Dans la formule: AC =? (AH² + CH²).
La somme des angles d'un triangle est égale à 180°. Ce triangle possède un angle droit et ses deux autres angles sont égaux. Les deux angles égaux valent (180 − 90) ÷ 2 = 45°. Un triangle équilatéral a ses trois angles égaux à 60°, donc il ne possède pas d'angle droit.
Un polygone qui a trois côtés s'appelle un triangle. Il a également trois sommets et trois angles. On peut le nommer par ses sommets. Ex. : Ce triangle s'appelle ABC.
𝐹 un sur 𝑂𝐴 est égal à 𝐹 deux sur 𝐴𝐶 qui est égal à 𝐹 trois sur 𝑂𝐶 représente la règle du triangle des forces. Les options (C) et (D) correspondent aux trois forces par rapport aux angles du triangle.
Triangle isocèle
La somme des angles d'un triangle est égale à 180°. On a donc : + + = 180°.
2- Faites l'application numérique avec la formule A = 1/2bh. Comme on cherche h, les calculs sont alors les suivants : multipliez la base (b) par 1/2, puis divisez l'aire (A) par le résultat précédent. La valeur obtenue est la hauteur de votre triangle !
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.