Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Propriété Un vecteur n est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P. Méthode à utiliser Pour montrer que le vecteur й est normal au plan (ABC), on vérifiera que й est orthogonal à AB et AC (on peut aussi raisonner avec AB et BC ou bien encore avec AC et BC).
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Deux vecteurs sont orthogonaux, si et seulement si, leur produit scalaire est égal à . En effet : u → ⊥ v → si, et seulement si, ( u → , v → ) = ± π 2 si, et seulement si, ( u → , v → ) = 0 si, et seulement si, u → ⋅ v → = 0 .
Un vecteur \overrightarrow{n} est normal à un plan si et seulement s'il est orthogonal à deux vecteurs non colinéaires de ce plan.
Pour que deux vecteurs soient orthogonaux, leur produit scalaire doit être nul. Afin de trouver la solution, il suffit de trouver lequel de ces vecteurs ne donne pas un produit scalaire nul lorsqu'il est multiplié avec ( 2 ; − 3 ; 5 ) .
I) Projeté orthogonal d'un point sur une droite de l'espace
Si la droite Δ admet pour vecteur directeur le vecteur →u, alors : →AH⋅→u=0. Si le projeté orthogonal du point A sur la droite Δ est le point H, alors la distance du point A à la droite Δ est : d(A ; Δ)=AH.
Définition 10 Soit
sont orthogonaux si leur produit scalaire est nul.
Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.
Définition : Vecteurs perpendiculaires
Deux vecteurs ⃑ 𝑢 = ( 𝑥 , 𝑦 ) et ⃑ 𝑣 = ( 𝑥 , 𝑦 ) sont perpendiculaires si ⃑ 𝑢 ⋅ ⃑ 𝑣 = 0 .
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Définitions : - On appelle repère du plan tout triplet (O, ⃗, ⃗) où O est un point et ⃗et ⃗ sont deux vecteurs non colinéaires. - Un repère est dit orthogonal si ⃗et ⃗ ont des directions perpendiculaires. - Un repère est dit orthonormé s'il est orthogonal et si ⃗et ⃗ sont de norme 1.
Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Pour savoir si →u, →v et →w sont coplanaires:
On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires.
Ce système équivaut à : Si a = 8 alors b = -2 et c = 13. Un vecteur normal au plan (ABC) est le vecteur donc l'équation cherchée est de la forme : 8x -y +13z + d = 0.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Si une droite (d) est orthogonale à deux droites sécantes du plan P, alors elle est orthogonale au plan P.
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
Ces deux vecteurs→u et →v sont colinéaires si z→vz→u z v → z u → est un réel. Ils sont orthogonaux si ce quotient est un imaginaire pur. Le plan complexe est muni d'un repère orthonormal direct (O;→u;→v) ( O ; u → ; v → ) (…).
en géométrie plane, c'est une projection telle que les deux droites — la droite sur laquelle on projette et la direction de projection — sont perpendiculaires ; en géométrie dans l'espace, c'est une projection telle que la droite et le plan — quels que soient leurs rôles respectifs — sont perpendiculaires.
Si D est une droite de l'espace, on appelle projection orthogonale sur D l'application qui à tout point M du plan associe le point M′ tel que {M′∈D(MM′)⊥D { M ′ ∈ D ( M M ′ ) ⊥ D M′ est le point d'intersection de D et du plan normal à D passant par M .
Définition : La projection d'un vecteur dans la direction d'un autre. Sachant que l'angle entre ⃑ 𝐴 et ⃑ 𝐵 est 𝜃 , la projection du vecteur ⃑ 𝐴 dans la direction du vecteur ⃑ 𝐵 est donnée par P r o j c o s ⃑ ⃑ 𝐴 = ‖ ‖ ⃑ 𝐴 ‖ ‖ 𝜃 .
Comment on calcule le produit scalaire ? Pour calculer un produit scalaire, il faut appliquer la bonne formule en fonction des données que nous avons. Si nous connaissons les composantes des vecteurs, nous utiliserons la formule u → ⋅ v → = u x v x + u y v y .
On peut aussi donner un sens à deux parties orthogonales : A et B sont orthogonales si ⟨x,y⟩=0 ⟨ x , y ⟩ = 0 pour tout x∈A x ∈ A et tout y∈B y ∈ B . Pour X⊂E X ⊂ E , X⊥ est alors la plus grande partie de E orthogonale à X .