Une situation de proportionnalité est représentée graphiquement dans un repère par des points alignés avec l'origine du repère. Réciproquement, si une situation est représentée graphiquement dans un repère par des points alignés avec l'origine du repère, alors c'est une situation de proportionnalité.
Si deux grandeurs sont proportionnelles, alors les points de la représentation graphique sont sur une droite passant par l'origine. Si les points de la représentation graphique sont sur une droite passant par l'origine, alors les deux grandeurs sont proportionnelles.
Retenir Deux grandeurs sont proportionnelles si on peut obtenir toutes les valeurs de l'une en multipliant celles de l'autre par un même nombre non nul. Elles varient toujours dans la même proportion.
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
Deux grandeur sont proportionnelles si l'on passe de l'une à l'autre en multipliant toujours par le même nombre, qui s'appelle le coefficient de proportionnalité. A et B sont de grandeur et k un nombre , si A=k×B alors on dit que A est proportionnel à B et k est le coefficient de proportionnalité.
Les électeurs votent pour un parti. Puis les sièges sont attribués aux différents partis proportionnellement au nombre de voix qu'ils ont obtenu. Les candidats élus sont pris dans chacune des listes dans leur ordre d'apparition.
Deux grandeurs sont proportionnelles si on obtient les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre. La proportionnalité indique donc une conservation des proportions des grandeurs.
Exemples : 1) Les points sont alignés sur une droite qui passe par l'origine du repère, il s'agit donc d'une situation de proportionnalité. 2) Les points sont alignés sur une droite qui ne passe pas par l'origine du repère, il ne s'agit donc pas d'une situation de proportionnalité.
Définition : On dit que deux grandeurs sont proportionnelles lorsque les valeurs de l'une sont obtenues en multipliant les valeurs de l'autre par un même nombre non nul, appelé coefficient de proportionnalité.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3 \times 1{,}02 = 3{,}06 €.
Deux grandeurs sont proportionnelles quand on obtient les valeurs de l'une en multipliant par le même nombre – autre que 0 – toutes les valeurs de l'autre. Le nombre qui permet de passer d'une suite de nombres à l'autre s'appelle le « coefficient de proportionnalité ».
Des exemples de proportionnalité
Pour calculer le prix d'une quantité donnée, il suffit de multiplier cette quantité par le prix d'un soldat : 10 €. À partir d'un prix on peut trouver la quantité qui correspond. Il suffit de diviser ce prix par le prix d'un seul jouet, 10 €.
Deux grandeurs sont proportionnelles si, lorsqu'on en multiplie une par un nombre non nul, l'autre est également multipliée par ce même nombre. Max a acheté 1 croissant pour 1,02€. Pour en acheter 3, il devra payer 3 fois plus cher, c'est-à-dire, 3×1,02=3,06 €. Le prix est proportionnel au nombre de croissants achetés.
Deux grandeurs sont proportionnelles si, lorsqu'on multiplie l'une par un nombre non nul, l'autre est également multipliée par ce même nombre. Connaître le coefficient de proportionnalité entre ces deux grandeurs permet de passer de l'une à l'autre. Cela n'est possible que si les deux grandeurs sont proportionnelles.
Reconnaître une situation de proportionnalité
Deux grandeurs sont proportionnelles si, lorsqu'une grandeur augmente, l'autre augmente dans la même proportion. Cela signifie qu'elles ont le même multiplicateur.
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Il y a proportionnalité dans un tableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s'obtiennent en multipliant ceux de la première par un même nombre que l'on appelle coefficient de proportionnalité.
L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés. Remarque : Cette propriété de proportionnalité des accroissements permettra de calculer facilement le coefficient directeur a d'une fonction affine.
Pour savoir si un tableau est proportionnel, on prend chaque colonne de ce tableau et on divise le nombre de la seconde ligne par celui de la première ligne.
Deux grandeurs sont proportionnelles lorsque les valeurs de l'une sont obtenues en multipliant les valeurs de l'autre par un même nombre non nul appelé coefficient de proportionnalité. On dit alors qu'il y a situation de proportionnalité.
DÉFINITION – Proportion Une proportion est un nombre qui permet de passer (par multiplication) de l'effectif d'une partie à l'effectif d'une autre partie (l'une des deux parties peut être le tout).
Moyenne de chaque liste : On divise le nombre de suffrages obtenus par le nombre de sièges obtenus + 1. ⇨ La liste B obtient la plus forte moyenne et reçoit un siège. La même opération est reconduite pour attribuer les deux sièges restants. ⇨ La liste A obtient la plus forte moyenne et reçoit un siège.
Cette méthode consiste à attribuer successivement les sièges non encore pourvus aux listes qui ont le plus fort reste c'est à dire le plus grand nombre de voix inutilisées lors du premier calcul. En cas d'égalité des restes, le siège revient à la liste quia obtenu le plus grand nombre de suffrages.
Définition et exemples
On parle de majorité absolue par opposition à la majorité relative. La majorité absolue est égale à la moitié des suffrages exprimés plus un si leur nombre est pair ou, si leur nombre est impair, égale à la moitié du nombre pair immédiatement supérieur.