Dans le cas où les familles sont infinies, une famille sera libre si toute sous-famille finie l'est. Une famille est liée si elle n'est pas libre. Une famille est génératrice si tout vecteur de l'espace s'écrit comme combinaison linéaire finie des vecteurs de la famille.
Pour montrer que U est une famille génératrice de E, on prend un x quelconque dans E et on cherche à l'exprimer comme combinaison linéaire des vecteurs de la famille. Si on a montré précédemment que E est égal à vect(U), on peut directement conclure que U est génératrice de E.
Si tous les vecteurs de la famille appartiennent à un sous-espace vectoriel strict de E (qui est donc inclus dans E, mais qui n'est pas égal à E), cette famille ne peut pas être génératrice de E. Toute famille u_1, u_2,…, u_n de E qui est une base de E est génératrice de E.
Systèmes générateurs
On dit qu'un système S=(u1,u2,....,un) est 'générateur' pour l'espace E si tout vecteur de E peut s'écrire comme une combinaison linéaire des ui. Cela revient à dire que E est le plus petit sous-espace contenant tous les ui.
En théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses.
Les génératrices d'urgence pour la maison 13 - 100 kW installées en permanence qui fournissent une alimentation au besoin. Ces génératrices peuvent être alimentées par du gaz naturel ou du gaz GPL. Les génératrices portatives 9 500 W robustes que vous pouvez installer dans votre maison pour une alimentation de secours.
Si on enlève un vecteur à une famille libre, alors elle ne peut plus être génératrice. En effet, le vecteur que l'on vient d'enlever n'est pas combinaison linéaire des autres, donc il n'est pas dans l'espace engendré par les autres.
Définitions. On apelle vecteur un segment de droite orienté noté . A est l'origine du vecteur et B son extrémité. On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
Pour ce côté là, il suffit de dire que le cardinal de (u,v) est égal au cardinal de (i,j), autrement dit, (u,v) contient autant de vecteurs que (i,j). Donc (u,v) est génératrice de V. De plus, dim V = 2 car (i,j) est une base de V. Donc (u,v) est une base de V.
Or detA = ad − bc est nul ssi les vecteurs u et v sont colinéaires, donc detA = 0 et A est inversible et on peut trouver λ et µ tels que x = λu + µv, donc la famille (u, v) est bien une base de R2.
On dit que deux vecteurs sont colinéaires si, en multipliant les composantes de l'un des vecteurs par un scalaire k (constante), on obtient les composantes de l'autre vecteur.
Définition d'une base
Une famille de vecteurs de E est une base de E si c'est une famille à la fois génératrice de E et libre. De façon équivalente, une famille est une base de l'espace vectoriel E quand tout vecteur de l'espace se décompose de façon unique en une combinaison linéaire de vecteurs de cette base.
Pour montrer que les sous-espaces vectoriels F et G sont supplémentaires, il suffit de montrer que F ∩ G = {0} et dimF + dimG = dimE. dim(F + G) = dimF + dimG − dim(F ∩ G).
Afin de pouvoir calculer la puissance nécessaire au démarrage de vos outils et appareils, il vous faut connaître leur coefficient de démarrage. Le calcul pour obtenir la puissance nécessaire au démarrage est ensuite très simple : Puissance nominale en watts x coefficient = puissance maximum nécessaire au démarrage.
Un vecteur est nommé vecteur glissant (ou glisseur) lorsqu'on impose sa droite support. En mécanique du solide indéformable, la force est modélisée par un vecteur glissant.
Une famille est liée si elle n'est pas libre. Une famille est génératrice si tout vecteur de l'espace s'écrit comme combinaison linéaire finie des vecteurs de la famille.
Exemple. Soit v1 = (1,1,0), v2 = (1,2,3) et F = Vect(v1,v2). On peut vérifier que ces deux vecteurs sont linéairement indépendants, donc ils forment une base de F. Si z − 3y + 3x = 0, il n'y a pas de solution.
Vecteur nul :
Lorsque deux points A A A et B B B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 → \overrightarrow{0} 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
Définition - Le produit vectoriel de deux vecteurs →u et →v est le vecteur →u×→v qui satisfait les propriétés suivantes : →u×→v est perpendiculaire à →u et à →v; ‖→u×→v‖=‖→u‖‖→v‖|sinθ|
Un vecteur, généralement noté →u , est un objet mathématique qui possède à la fois une grandeur et une orientation (soit une direction et un sens). Tout comme son écriture l'indique, le vecteur est en fait une droite qui possède un point de départ et une flèche pour indiquer son point d'arrivée et sa direction.
Démonstration : a) Soit d := max{k ≥ 0 : ∃ e1, ..., ek ∈ E,{e1, ..., ek} est libre}. Comme la famille vide est libre et comme une famille libre a au plus n éléments, l'en- tier d est bien défini. Si {e1, ..., ed} est une famille libre, elle est forcément libre maximale.
Un vecteur libre caractérise donc une grandeur, une direction et un sens mais son origine ou son extrémité peut être fixée librement. Tout vecteur libre peut être représenté par un élément quelconque de l'ensemble des vecteurs géométriques qu'il désigne.
Le rang d'une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles. Par exemple, dans la matrice échelonnée donnée en exemple ci-dessus, 4 colonnes sur 6 sont non nulles, donc le rang de cette matrice est 4.