si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
La dérivée k-i`eme se note f(k) et on a f(k) = (f(k−1)) . On dit que f est indéfiniment dérivable si f est k-dérivable pour tout k. On dit que f est de classe Ck si f(k) existe et est continue.
Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.
On dit qu'une fonction est dérivable en 𝑥 = 𝑥 si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥 à gauche ou à droite respectivement.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
Graphiquement, si la fonction est définie mais non dérivable en un point, on observe un point anguleux, c'est-à-dire que le tracé de la courbe est « cassé ». Pourquoi ? Parce que la tangente à gauche du point n'est pas la même qu'à droite.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
fonction de classe C-infini. Une fonction définie sur un domaine I est dite de classe-infini sur I si elle est infiniment dérivable sur ce domaine. La plupart des fonctions usuelles sont de classe C-infini.
Soient f:I→R et x0∈I. f est dérivable au point x0 si et seulement si f est dérivable à droite et à gauche en x0, et f′d(x0)=f′g(x0).
Lorsque l'on définit une fonction, on l'écrit généralement sous la forme 𝑓 ∶ 𝑋 ⟶ 𝑌 . Cela signifie que pour tout élément 𝑥 ∈ 𝑋 , on associe par la fonction 𝑓 un élément 𝑦 ∈ 𝑌 . Nous écrivons cela comme 𝑓 ( 𝑥 ) = 𝑦 .
On appelle f fonction définie sur D , tout procédé de calcul, qui à chaque réel x , lui associe un réel unique noté f(x) .
Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure.
- Limites à l'infini
Lorsque la variable x prend des valeurs très grandes (positivement ou négativement), on dit que x tend vers plus ou moins l'infini. Dans ce cas, on distingue les cas où f ( x ) f(x) f(x) se rapproche d'une valeur finie et ceux où f ( x ) f(x) f(x) s'éloigne vers l'infini.
Une fonction f définie dans un sous-ensemble E de nombres réels admet un maximum M en un point a de E si M = f(a) et si, quel que soit x de E, f(x) est inférieur ou égal à f(a). On dit alors que M est le maximum de l'ensemble des images de f.
Il est impossible de prouver l'existence d'un ensemble infini sans la supposer. Plus exactement, il est possible de définir une théorie des ensembles parfaitement cohérente qui affirmerait que tous les ensembles seraient finis.
de classe C∞ si f est Ck sur I pour tout k≥1 k ≥ 1 . Autrement dit, si f est indéfiniment dérivable sur I .
Le zéro est alors appelé sunya ce qui signifie le vide. Au XIIe siècle, le mathématicien indien Bhaskara parvient à établir que 1/0 = l'infini. Il démontre ainsi, la relation qui existe entre le vide et l'infini. Au IXe siècle, les Arabes emprunteront aux Indiens le zéro, le mot sunya devenant sifr.
La fonction valeur absolue n'est donc pas dérivable en 0.
Par contre : la courbe admet deux demi-tangentes en 0.
Donc n'est pas dérivable en 0. Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0.
Toute racine de 1 est 1 .