Comment savoir si une fonction est positive ?

Interrogée par: Luc Thibault  |  Dernière mise à jour: 27. Oktober 2022
Notation: 4.5 sur 5 (39 évaluations)

On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).

Comment déterminer signe d'une fonction ?

Définition : Signe d'une fonction

Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction ? ( ? ) sur un intervalle ? , le signe est positif si ? ( ? ) > 0 pour tout ? dans ? , le signe est négatif si ? ( ? ) < 0 pour tout ? dans ? .

Comment savoir si une fonction dérivée est positive ou négative ?

Soient f une fonction dérivable sur un intervalle I et f′ la fonction dérivée de f.
  • Si f est croissante sur I, alors f′ est positive sur I.
  • Si f est décroissante sur I, alors f′ est négative sur I.
  • Si f est constante sur I, alors f′ est nulle sur I.

Comment justifier qu'une fonction est positive sur R ?

On dit d'une fonction f qu'elle est positive sur un intervalle si, pour tout x dans cet intervalle, on a f(x) ≥ 0. La courbe représentative de la fonction est alors située au-dessus de l'axe horizontal, lorsqu'on se limite aux points dont l'abscisse appartient à l'intervalle considéré.

Comment savoir si la fonction est croissante ou décroissante ?

(a) Fonctions croissantes/décroissantes

On dit que la fonction est strictement croissante sur l'intervalle [a,b] si la courbe représentant la fonction monte sur cet intervalle; elle est strictement décroissante sur l'intervalle [a,b] si la courbe descend sur cet intervalle.

Fonction croissante ou décroissante, positive ou négative sur un intervalle

Trouvé 29 questions connexes

Comment Appelle-t-on une courbe qui monte et qui descend ?

La courbe en cloche ou courbe de Gauss est l'une des courbes mathématiques les plus célèbres. On la voit apparaître dans un grand nombre de situations concrètes — en statistiques et en probabilités — et on lui fait souvent dire tout et n'importe quoi.

Comment trouver le sens de variation ?

Pour une fonction f dérivable sur un intervalle I, on a les théorèmes suivants : si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I.

Comment prouver qu'une suite est positive ?

Re : Suite strictement positive

L'idée d'une démonstration par récurrence est simple : Il faut montrer que si une propriété est vraie pour un certain rang, alors elle est vrai pour le rang suivant. Si en plus elle est vraie pour le premier rang (ici n=0), alors cette propriété est vraie.

Comment déterminer le signe d'une fonction affine ?

Signe d'une fonction affine

Le signe de la fonction affine f(x) = ax + b dépend du signe du coefficient directeur a.

Pourquoi la fonction exponentielle est toujours positive ?

Pour tout nombre réel x, exp′(x)=exp(x)>0. La fonction dérivée de la fonction exponentielle est strictement positive sur R donc la fonction exponentielle est strictement croissante sur R.

Comment on fait un tableau de signe ?

On peut retenir l'ordre des signes grâce au raisonnement suivant : si le coefficient directeur a est positif, la fonction est croissante donc d'abord négative puis positive. si le coefficient directeur a est négatif, la fonction est décroissante donc d'abord positive puis négative.

Quel est le signe d'une fonction constante ?

Une fonction est constante si et seulement si son image est réduite à un singleton. Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses. La dérivée d'une fonction constante est nulle.

Quelle est la dérivée de 1 ?

La dérivée de 1 est nulle, car c'est une constante.

Quand le delta est négatif ?

Si Δ est strictement positif, alors il y a deux solutions réelles à l'équation du second degré. Si Δ = 0 , alors il y a une solution réelle (répétée). Et si Δ est strictement négatif, alors il n'y a pas de solutions réelles.

Comment étudier une fonction ?

Pour étudier une fonction
  1. On calcule la dérivée de la fonction.
  2. On étudie le signe de la dérivée.
  3. On calcule les limites de la fonction aux bornes de son ensemble de définition ainsi que les valeurs de la fonction pour les valeurs de x où f' change de signe. Enfin on est en mesure de dessiner son tableau de variations.

Comment étudier le signe d'un polynôme ?

Pour étudier le signe d'une fonction polynôme du second degré, on utilise la forme factorisée puis on dresse un tableau de signes. f est la fonction définie sur R par f(x)=−3(x−1)(x+2).

Quel est le signe de la fonction inverse ?

La fonction qui à tout nombre réel x non nul associe son inverse x1 est appelée fonction inverse. Elle est définie sur − ] ∞ ; 0 [ ∪ ] 0 ; + ∞ [ -]\infty\ ;\,0[\,\cup\,]0\ ;\,+\infty[ −]∞ ;0[∪]0 ;+∞[ par f ( x ) = 1 x f(x)=\dfrac{1}{x} f(x)=x1.

C'est quoi le tableau de signe d'une fonction ?

En mathématiques, un tableau de signes est un tableau à double entrée qui permet de déterminer le signe d'une expression algébrique factorisée, en appliquant la règle des signes et en facilitant l'organisation du raisonnement.

Quelle est la différence entre une fonction affine et linéaire ?

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.

Comment justifier qu'une fonction est décroissante ?

Si [a,b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est décroissante dans l'intervalle [a,b] si et seulement si pour tout élément x1 et x2 de [a,b], si x1<x2, alors f(x1)≥f(x2).

Quel est le sens de variation de la fonction f ?

1) Sens de variation :

a) Fonction croissante sur un intervalle : Une fonction f est dite croissante sur un intervalle I si , lorsque les valeurs de la variable x augmentent alors les valeurs des images f(x) augmentent aussi. Pour tout x1 et x2 de l'intervalle I , si x1 x2 alors f(x1) f(x2).

Comment faire un 1 un ?

Un+1 - Un = [5n + 5 + 3] - [5n +3]. Un+1 - Un = [5n + 8] - [5n +3]. Un+1 - Un = 5n + 8 - 5n - 3 Un+1 - Un = 5. La différence Un+1 - Un est un réel ne dépendant pas de n (constant), donc la suite (Un) est arithmétique de raison r=5 et de premier terme U0= 3.

Comment faire une fonction inverse ?

La fonction inverse est la fonction définie sur R∗=]−∞;0[∪]0;+∞[ qui, à tout réel x différent de 0, associe son inverse x1.
...
DÉMONSTRATION
  1. Soit x∈R∗. −x1=−x1 donc l'image de −x est l'opposée de l'image de x.
  2. Supposons qu'il existe un réel x tel que x1=0. Alors 1=0×x, d'où 0=1. ...
  3. Voir exercice.

Pourquoi calculer la dérivée d'une fonction ?

La dérivée d'une fonction permet : De calculer le coefficient directeur et donc l'équation d'une tangente. De déterminer, avant de faire un graphique, les intervalles où la fonction est croissante ou décroissante.

Comment lire un graphique de fonction ?

Voici la marche à suivre:
  1. On trace une droite verticale à partir de l'antécédent dont on veut trouver l'image.
  2. On note l'unique intersection entre cette droite et le graphe de f.
  3. On trace une droite horizontale en ce point. L'intersection de cette droite avec l'axe des ordonnées nous donne l'image recherchée.

Article précédent
Quelle tenue pour ce soir ?