Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
Par exemple, ∫ 0 1 1 x d x = lim a → 0 + ∫ a 1 1 x d x . Si l'aire sous la courbe du domaine illimité est finie, alors l'intégrale impropre correspondante est dite convergente. Si cette aire est infinie, elle est dite divergente.
On dit que l'intégrale ∫baf ∫ a b f est convergente si, pour un (ou de façon équivalente pour tout) c∈]a,b[ c ∈ ] a , b [ , la fonction x↦∫xcf(t)dt x ↦ ∫ c x f ( t ) d t admet une limite finie lorsque x tend vers b et la fonction x↦∫cxf(t)dt x ↦ ∫ x c f ( t ) d t admet une limite finie lorsque x tend vers a .
On parlera d'intégrale généralisée ou bien d'intégrale impropre. f(x)dx . Si l'intégrale n'est pas convergente, on dira qu'elle est divergente. Ce statut est appelé nature de l'intégrale.
Définition : Quand une intégrale ne converge pas, on dit qu'elle diverge. La nature d'une intégrale généralisée est le fait qu'elle converge ou qu'elle diverge.
On dit que f est intégrable sur I ou que ∫If ∫ I f est absolument convergente si ∫I|f| ∫ I | f | converge. Théorème : Si f est intégrable sur I , alors ∫If(t)dt ∫ I f ( t ) d t converge. Si ∫If(t)dt ∫ I f ( t ) d t converge sans que f ne soit intégrable sur I , alors on parle d'intégrale semi-convergente.
Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Toute fonction en escalier est bornée car elle ne prend qu'un nombre fini de valeurs. Si f est réglée, il existe ϕ en escalier telle que, pour tout x ∈ [a, b], |f(x) − ϕ(x)| ≤ 1, et donc |f(x)|≤|ϕ(x)| + 1, ce qui prouve que f est bornée.
On appelle intégrale de f entre a et b le nombre F(b) – F(a). et se lit : « intégrale de a à b de f(t) dt », a et b étant les bornes de l'intégrale. Remarques : Ce nombre est indépendant de la primitive F choisie. En effet si G est une autre primitive de f, alors G = F +k et donc G(b) – G(a) = F(b) – F(a).
— Convergence simple : La suite de fonctions (fn) converge simplement vers la fonction nulle. En effet pour chaque x > 0 fixé, fn(x) = 0 pour tout n > 1/x, donc limfn(x)n→+∞ = 0, et on a aussi fn(0) = 0 pour tout n, donc fn(0) → 0 quand n → +∞.
Si une série converge, son terme général tend vers 0. Dans le cas où le terme général ne tend pas vers 0, on dit que la série diverge grossièrement.
On considère donc une série ∑ u n à termes réels. On a, pour tout : u n + ≤ | u n | et u n − ≤ | u n | . Ainsi, si la série ∑ | u n | est convergente, il en est de même des séries ∑ u n + et ∑ u n − , et donc de la série ∑ u n .
La convergence signifie que deux moyennes mobiles se rejoignent, tandis que la divergence signifie qu'elles s'éloignent l'une de l'autre.
Si la lentille est convergente, l'image est grossie (grossissement>1), et lorsqu'on déplace la lentille dans un sens, l'image défile dans l'autre sens. Si la lentille est divergente, l'image est rétrécie (grossissement<1), et défile dans le même sens que le déplacement de la lentille.
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
On dit que la suite u est bornée lorsqu'elle est à la fois majorée et minorée. Si la suite u est une suite croissante et majorée, alors elle converge. Si la suite u est décroissante et minorée, alors elle converge. Si la suite u est majorée par M et convergente vers le nombre L, alors L ≤ M.
Une fonction à valeurs réelles est dite majorée ( resp. minorée) si l'ensemble de ses valeurs possède un majorant ( resp. minorant) réel. Elle est bornée si et seulement si elle est à la fois majorée et minorée.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
Pour déterminer une primitive d'une fonction rationnelle, on décompose celle-ci en une somme d'une fonction polynôme et d'une fonction inverse. Exemple : Soit f\left ( x \right )=\frac{x^{2}+2}{x-3} définie sur ]3\, ;+\infty[. Elle peut s'écrire sous la forme : f\left ( x \right )=ax+b+\frac{c}{x-3}.
et F son unique primitive prenant la valeur 0 en 0. Alors, la fonction G : x → F (x)+ F (−x) est dérivable sur de dérivée x → f (x)− f (−x) = 0. G est donc constante et comme G (0) = 0, alors :∀x ∈ G (x) = F (x)+ F (−x) = 0. F est donc impaire.
En mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0.
Exemple : La série s'appelle série harmonique. On prouve qu'elle diverge par exemple en utilisant le critère de Cauchy. On a en effet : S2n−Sn=2n∑k=n+11k≥2n∑k=n+112n=n2n≥12.
Par exemple, la suite un = (−1)n diverge : la suite des termes pairs converge vers 1, la suite des termes impairs converge vers −1. Remarquons aussi que la modification d'un nombre fini de termes n'a aucune incidence sur la convergence d'une suite.
1 n(n + 1) converge et a pour somme 1. n diverge.