Pour simplifier, il faut trouver le multiple commun au numérateur et au dénominateur, et diviser les deux termes de la fraction, par ce multiple.
Simplification d'une fraction
Une fraction est écrite sous forme simplifiée si le numérateur et le dénominateur n'ont aucun facteur commun. En d'autres mots, sous forme simplifiée, il est impossible de trouver un nombre qui soit diviseur à la fois du numérateur et du dénominateur.
Simplifier une fraction, c'est justement trouver une fraction égale mais avec un numérateur et un dénominateur plus petits que ceux de la fraction initiale pour « simplifier » l'écriture de la fraction. Ainsi, pour pouvoir simplifier une fraction, il faut d'abord bien connaître la notion de quotients égaux.
Pour simplifier l'écriture d'une expression littérale, on peut supprimer le symbole × devant une lettre ou une parenthèse. Remarque : On ne peut pas supprimer le signe × entre deux nombres. Exemple : Simplifie l'expression suivante : A = – 5 × x + 7 × (3 × x – 2) × (– 4).
Comment peut-on simplifier l'écriture |x|? Pour enlever une valeur absolue, il faut toujours faire deux cas : si x est positif alors |x| = x, et si x est négatif alors |x| = - x ( |-9| = - (-9) = 9).
Simplifier les fractions suivantes: 45/25= 24/16= -28/49= 81 - _ 54 - Nosdevoirs.fr.
Commencez par additionner les dénominateurs entre eux pour obtenir le dénominateur du résultat final. Ensuite, multipliez le dénominateur de gauche par le numérateur de droite et le dénominateur de droite par le numérateur de gauche. Additionnez les deux résultats pour obtenir le numérateur de la solution.
Pour inverser une fraction, il suffit de la retourner. Le numérateur devient le dénominateur, tandis que le dénominateur devient le numérateur. 3/7 est l'inverse de la fraction 7/3.
Lorsque tu dois trouver, par exemple, le 2/3 d'un nombre, le dénominateur te dit en combien de parties égales tu dois diviser ton nombre (ici 3) et que ton numérateur te dit combien de parties utiliser (ici 2).
Pour faire disparaitre une racine carrée d'un dénominateur, il suffit de multiplier la fraction au numérateur et dénominateur par cette même racine carrée.
Pour réduire des fractions au même dénominateur, il faut trouver le plus petit multiple commun aux dénominateurs. On distingue plusieurs cas : L'un des dénominateurs est multiple de l'autre. Exemple : \frac{4}{3} et \frac{7}{6} ; 6 = 3 × 2.
Diviser par le diviseur commun
On divise par 2 le numérateur et le dénominateur, on obtient la fraction 5/10. La fraction 5/10 est une simplification de la fraction 10/20.
Lorsqu'on simplifie une expression littérale, les nombres doivent être multipliés entre eux. Simplification de l'expression littérale D. On commence par placer les nombres devant les lettres classées par ordre alphabétique. On supprime ensuite les signes de multiplication inutiles et on multiplie les nombres entre eux.
Simplifier une racine carrée, c'est l'écrire sous la forme « a x √b » avec b le plus petit possible. La simplification de racines carrées est utile quand on doit effectuer des additions, des soustractions ou des multiplications de racines carrées.
Pour écrire ab comme une fraction avec un dénominateur commun, multipliez par aa . Pour écrire −ba comme une fraction avec un dénominateur commun, multipliez par bb .
I) Ecriture simplifiée
Il s'agit d'une manière visant à enlever les parenthèses pour alléger l'écriture. Pour le faire, il s'agit d'abord de transformer les soustractions en additions, permettant ainsi d'enlever les parenthèses et les signes $+$. Exemples : a) Simplifions l'écriture puis calculons $(+9) – (+3)$.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
On calcule la valeur d'une expression littérale lorsque l'on attribue une valeur aux lettres contenues dans l'expression. Si une même lettre est utilisée plusieurs fois, on lui attribue le même nombre à chaque fois. Exemple 1 : Calculer l'expression A = 5 × ( 6 − x ) + 3 x − 7 y lorsque et .