Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.
La méthode de l'intégration par parties est utilisée lorsque les deux fonctions n'ont aucun lien de dérivation. Par exemple, xexp(x) , on peut dériver autant de fois qu'on veut exp(x) , on n'obtiendra jamais x , et vice versa. Les deux fonctions ne sont pas liées et il faut les intégrer par parties.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
La fonction G est aussi dérivable sur I avec G' = F' = f . Donc G est une primitive de f sur I . Inversement, si G est une primitive de f sur I alors G' = f = F' d'où G' - F' = 0 . La dérivée de G - F est nulle sur l'intervalle I donc G - F est constante sur I .
La principale méthode pour calculer une intégrale passe par la notion de primitive d'une fonction. La « primitivation » est l'opération qui, à partir d'une fonction f, donne une fonction F dérivable et dont la dérivée est égale à f : F′(x) = f(x).
Cette formule de l'intégration par parties peut se retrouver facilement à partir de la dérivée du produit de deux fonctions : (uv)' = u'v + v'u.
Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.
Soit f une fonction affine définie sur par : f(x) = ax + b où a et b sont deux réels avec a ≠ 0. Alors sa dérivée est la fonction f′ définie sur par : f′(x) = a. f est de la forme u + v avec u(x) = ax et v(x) = b. Alors f′(x) = u′(x) + v′(x) = a × 1 + 0 = a.
Le symbole d d x donne la précision qu'il s'agit de la dérivée par rapport à . On peut l'appliquer à l'expression de la fonction. Par exemple, si est la fonction qui à tout réel fait correspondre son carré , la dérivée de peut s'écrire d d x ( x 2 ) .
Condition suffisante d'existence d'une primitive
Si f est une fonction continue sur l'intervalle [a,b], alors f admet une primitive F définie pour tout x ∈ [ a , b ] x \in \left[a,b\right] x∈[a,b] par F ( x ) = ∫ a x f ( t ) d t F(x) = \int_{a}^{x}f(t)dt F(x)=∫axf(t)dt.
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Soit I un intervalle de R et f:I→R f : I → R . On dit que f est uniformément continue si ∀ε>0, ∃η>0, ∀(x,y)∈I2, |x−y|<η⟹|f(x)−f(y)|<ε.
Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz . Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède , Pierre de Fermat et Isaac Barrow.
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée).
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Sa dérivée est toujours positive (ou nulle pour x = 0).
Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).
La dérivée permet de d'étudier les variations d'une fonction sur son domaine de définition.
Pour être plus précis, l'inverse du calcul de la dérivée est le calcul de primitive. Le calcul de primitive est l'un des moyens de calculer une intégrale. On peut aussi calculer une intégrale de façon géométrique, ou par des encadrements, des passages à la limite…
L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.
On parle de derivee pour une fonction de R dans R, et differentielle pour une fonction de plusieurs variables. La differentielle d'une fonction par exemple de Rn dans Rm est une application lineaire de Rn dans Rm.
On appelle fonction logarithme népérien, noté ln (ou ), la primitive définie sur ,de la fonction x ↦ 1 x s'annulant pour . Pour : ln x > 0 est l'aire limitée par la courbe représentative y = 1 / t , l'axe et les droites d'équations et .
Une primitive pour Arctangente.
Les deux fonctions u et v d' une intégration par parties sont alors définies par : u(x) = arctan(x). u est dérivable sur ]- ; + [ et u'(x) = . v'(x) = 1.