Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit. Les droites (d1) et (d2) sont perpendiculaires.
Si deux droites sont parallèles à une même droite, Alors elles sont parallèles. Les droites (d2) et (d3) sont perpendiculaires. Les droites (d1) et (d2) sont parallèles.
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l'une est alors perpendiculaire à l'autre.
Définition : Quand deux droites ne sont pas sécantes (même en les prolongeant à l'infini), on dit qu'elles sont parallèles. Quand deux droites n'ont pas de point d'intersection (même en les prolongeant à l'infini), on dit qu'elles sont parallèles.
Elle est désignée par une lettre minuscule entre parenthèses. Une demi-droite est une droite délimitée par un point d'un côté et infinie de l'autre. Elle est désignée par une lettre majuscule entre crochets d'un côté et une autre lettre majuscule entre parenthèses de l'autre.
Quand deux droites se coupent en formant un angle droit, elles sont perpendiculaires.
P : Si deux droites sont symétriques par rapport à un point, alors elles sont parallèles. P : Si deux angles correspondants déterminés par deux droites et une sécante ont la même mesure, alors ces deux droites sont parallèles.
Pour montrer qu'une droite est parallèle à un plan il suffit de montrer que cette droite est parallèle à une droite du plan. Pour montrer que deux droites sont parallèles : Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles.
¤ Un segment se note entre crochets. Exemple : [AB] désigne le segment de droite d'extrémités A et B. ¤ Une demi-droite se note entre un crochet et une parenthèse. Exemple : [AB) désigne la demi-droite d'origine A passant par B.
Pour nommer une droite, on utilise le nom des deux points situés à ses extrémités et on les écrit entre parenthèses. Par exemple, une droite allant du point A au point B peut s'écrire (AB). Il ne faut pas confondre avec [AB], qui est le nom du segment ayant pour extrémités les points A et B.
Une droite est constituée de points alignés. On représente une droite à l'aide d'une règle. Une droite est composée d'une infinité de points. Une droite est illimitée.
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
L'identification de droites perpendiculaires
Des droites perpendiculaires sont des droites sécantes qui se coupent à angle droit puisque la pente de l'une est l'opposée de l'inverse de la pente de l'autre. Deux droites perpendiculaires ont des pentes opposées et inverses.
Le point d'intersection de deux droites distinctes est le point où elles se rencontrent ou se coupent. C'est le couple de valeurs de ? et ? où les droites se coupent sur le graphique et qui vérifie les équations des deux droites.
Deux droites (AB) et (CD) sont parallèles lorsque les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
La réciproque du théorème de Thalès permet de dire que deux droites sont parallèles lorsqu'on connaît des rapports de longueurs. d'après la réciproque du théorème de Thalès, les droites (XY) et (WZ) sont parallèles.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Si deux droites sont parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. Donc (BC) et ( DC|CD) sont perpendiculaires. D'après l'énoncé, la droite (BC) est perpendiculaire à la droite (AB) et la droite (DC) est parallèle à la droite (AB). Les droites (BC) et (DC) sont donc perpendiculaires.
Deux droites distinctes sont parallèles si elles n'ont aucun point commun même si on les prolonge. Deux droites sont perpendiculaires si elles se coupent en formant un angle droit.
Deux droites de l'espace sont perpendiculaires si et seulement si elles se coupent en formant un angle droit. Dans l'espace, des droites, non parallèles, peuvent ne pas se couper. Si une des droites est parallèle à une droite perpendiculaire à l'autre alors les deux droites sont dites orthogonales.
Une droite est une ligne droite qui ne s'arrête jamais, qui est illimitée. On la note avec une lettre minuscule entre parenthèses. Tous les points qui se trouvent sur une droite sont alignés.
Définition : La droite (AB) est la droite qui passe par les points A et B. Une droite est illimitée. On peut prolonger son tracé de chaque côté. Définition : La segment [AB] est la partie de la droite qui a pour extrémités les points A et B.
Et la définition d'un segment ? C'est un trait droit qui relie deux points (et s'arrête). Une droite c'est un trait droit qui passe par deux points (sans s'arrêter), on l'écrit entre parenthèses : (AB). Un segment c'est un trait droit qui relie deux points (et s'arrête), on l'écrit entre crochets : [AB].