Si vous parlez de la médiane qui relie le sommet de l'angle droit au milieu de l'hypoténuse, sa longueur est égale à la moitié de celle de l'hypoténuse. Si vous parlez des autres médianes, on peut en calculer la longueur en utilisant le théorème de Pythagore.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Calculer la longueur d'un segment dans un repère
A B = ( x B − x A ) 2 + ( y B − y A ) 2 . C'est le théorème de Pythagore qui donne ce résultat.
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm.
En France, la longueur du segment d'extrémités A et B est notée AB.
Théorème : Si le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle. Si le carré de l'hypoténuse n'est pas égal à la somme des carrés des deux autres côtés, alors le triangle n'est pas rectangle. I. Le théorème de Thales pour calculer une longueur - sens direct.
Le côté le plus long est [BC] ; si le triangle était rectangle, ce côté serait l'hypoténuse. D'une part, on a BC² = 20² = 400. D'autre part, on a AC²+AB² = 16² +12² = 256+144 = 400.
Toujours pour découvrir la mesure de notre angle A, prenons son hypoténuse AB, et le côté qui lui est opposé, ici BC. Le sinus sera alors égal à la longueur du côté opposé (on l'appellera o) divisé par celle de l'hypoténuse (h), soit Cosinus A = a ÷ h).
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
Calculez l'hypoténuse du triangle isocèle. Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
Théorème de Thalès (appliqué au triangle)
D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
A = 2 × (L × l + L × h + l × h) ou A = 2Ll + 2Lh + 2lh.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Selon le théorème de Pythagore, le carré de l'hypoténuse est égal à la somme des carrés des longueurs des côtés à angle droit (les jambes).
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
Le théorème de Thalès sert donc à calculer les longueurs dans une figure géométrique composée de triangles.
b) Réciproque de Thalès.
Comme le théorème de Thalès est ainsi structuré : « Si des droites sont parallèles, alors des quotients de longueurs de segment sont égaux ». Sa réciproque ne peut être que de la forme : « Si des quotients de longueurs de segment sont égaux, alors des droites sont parallèles. »
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Un segment est un ensemble de points alignés compris entre deux points appelés extrémités (ou bornes). A l'opposé d'une droite, qui est infinie, le segment est limité. On les note entre crochets : [AB], [XY]... alors que les droites se notent entre parenthèses : (AB), (XY)...
La longueur d'un segment correspond à la distance entre ses extrémités. On mesure la longueur d'un segment avec une règle graduée.
Cours sur “Tracer et mesurer un segment” pour la 6ème
Le segment [AB] est l'ensemble des points de la droite (AB) situés entre les points A et B. On le note [AB] ou [BA]. La distance entre deux points est la longueur du plus court chemin entre ces deux points. C'est la longueur du segment qui joint ces deux points.