On peut trouver la réciproque d'une fonction en échangeant 𝑥 et 𝑦 dans l'égalité 𝑦 = 𝑓 ( 𝑥 ) et réarrangeant l'équation en fonction de 𝑦 . Nous pouvons déterminer son domaine de définition et son ensemble image en déterminant le domaine de définition et l'ensemble image de la fonction initiale et en les échangeant.
On va déterminer la réciproque par intervalles. Remarquons d'abord que f f définit une bijection de ]−∞;1[ ] − ∞ ; 1 [ dans ]−∞;1[ ] − ∞ ; 1 [ par la formule f(x)=x f ( x ) = x . La bijection réciproque est donnée par f−1(y)=y f − 1 ( y ) = y .
Une application f : E → F admet une application réciproque si et seulement si elle est bijective. Si f : E → F est bijective, alors f−1 : F → E est bijective. En effet, l'application réciproque associée `a f−1 est f : (f−1)−1 = f.
Ainsi, la fonction réciproque de f est définie par f−1(x)=3√x−2+1. Remplacer x par y pour trouver la fonction réciproque est également la méthode utilisée pour obtenir le graphique de f−1 à partir du graphique de f. Soit un point (a,b) appartenant à la fonction f, alors par définition f(a)=b si et seulement f−1(b)=a.
Deux fonctions et sont réciproques l'une de l'autre équivaut à : quel que soit , si l'image de par la fonction est , alors l'image de par la fonction est . La notation de la réciproque de est . Par définition, f ( a ) = b ⟺ f − 1 ( b ) = a .
La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y. y .
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans ce cas, ima(f)=[k,+∞[=dom(f−1). ima ( f ) = [ k , + ∞ [ = dom ( f − 1 ) . Si la fonction valeur absolue est ouverte vers le bas (lorsque a est négatif), l'ouverture de sa réciproque est vers la droite. Dans ce cas, ima(f)=]−∞,k]=dom(f−1).
Théorème de la bijection entre segments — Si f est une fonction continue et strictement monotone sur un intervalle [a, b] et à valeurs réelles, alors elle constitue une bijection entre [a, b] et l'intervalle fermé dont les bornes sont f(a) et f(b).
Deuxième méthode : expliciter directement la bijection réciproque. Soit la fonction g : Z → Z définie par g (m) = m−1 alors g ◦g(n) = n (pour tout n ∈ Z) et g◦g (m) = m (pour tout m ∈ Z). Alors g est la bijection réciproque de g et donc g est bijective.
bilatéral, mutuel, partagé. Contraire : unilatéral, univoque.
On calcule la valeur du coefficient directeur directeur m à partir des coordonnées des points A et B : . On lit sur le graphique la valeur de l'ordonnée à l'origine p (c'est l'intersection entre la droite et l'axe des ordonnées). On trouve p = –2. L'équation de la droite (d2) est donc : y = x – 2.
Si a > 0 a>0 a>0 la fonction est croissante. Si a < 0 a<0 a<0 la fonction est décroissante. Une fonction affine est une fonction linéaire avec l'ordonnées à l'origine b = 0 b=0 b=0.
L'abscisse et l'ordonnée à l'origine
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses. L'ordonnée à l'origine est la valeur de l'ordonnée (y) lorsque l'abscisse (x) vaut zéro.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
b) Réciproque de Thalès.
Comme le théorème de Thalès est ainsi structuré : « Si des droites sont parallèles, alors des quotients de longueurs de segment sont égaux ». Sa réciproque ne peut être que de la forme : « Si des quotients de longueurs de segment sont égaux, alors des droites sont parallèles. »
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
Selon la légende, Thalès aurait découvert ce théorème en calculant la hauteur d'une pyramide. Pour se faire, le mathématicien calcule l'ombre de la pyramide au sol puis, avec l'aide d'un bâton, calcule également l'ombre du bâton. C'est ainsi qu'il aurait pu calculer les dimensions de la pyramide d'Egypte.
Si AM AB = AN AC et si les points A,B et M d'une part et les points A, C et N d'autre part sont alignés dans le même ordre alors les droites (BC) et (MN) sont parallèles. B ∈[AM] et C ∈ [AN].
On dit qu'un polynôme P est réciproque lorsque P = Q. Auquel cas, pour x ≠ 0, P(x) = 0 ⇔ P(1/x) = 0.
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Une fonction polynôme de degré 2 est une fonction définie sur R dont l'expression algébrique peut être mise sous la forme : f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c, avec a ≠ 0 a\neq0 a=0.