Diviseurs et divisibilité dans l'ensemble des polynômes
Soient les polynômes P, Q et R. Si P = Q × R P=Q×R P=Q×RP, equals, Q, ×, R, alors Q et R sont des diviseurs de P.
Pour déterminer le diviseur entre le dividende et le quotient, il suffit de faire la division entre ce même dividende et ce même quotient.
qui est appelée méthode de Horner. Un élément de la ligne inférieure s'obtient en multipliant l'élément qui le précède par le nombre figurant dans la première colonne, en plaçant le résultat dans sa colonne et en effectuant la somme de deux premiers nombres de la colonne.
Une fonction polynôme de degré 2 f est définie sur ℝ par f (x) = ax2 + bx + c, où a, b et c sont des nombres réels donnés et a ≠ 0.
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Quels sont les critères de divisibilité ? Comment les utiliser ? Effectuer la division euclidienne d'un nombre entier a par un nombre entier b, c'est trouver le quotient entier et le reste de la division de a par b. Le nombre a est appelé le dividende et le nombre b est appelé le diviseur.
Il s'agit tout d'abord de reconnaître et de trouver des multiples. Le multiple d'un nombre est le produit de ce nombre avec un nombre entier. Par exemple : 6×8=48 donc 48 est un multiple de 6 et de 8. Si 48 est un multiple de 6 et de 8 alors 6 et 8 sont des diviseurs de 48.
Concernant 847, la réponse est : Non, 847 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 847) est la suivante : 1, 7, 11, 77, 121, 847.
– On appelle le degré de P le plus grand entier i tel que ai = 0 ; on le note degP. Pour le degré du polynôme nul on pose par convention deg(0) = −∞. – Un polynôme de la forme P = a0 avec a0 ∈ K est appelé un polynôme constant. Si a0 = 0, son degré est 0.
Méthode 2 : le tableau des diviseurs premiers
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
Les diviseurs de 25 sont : 1; 5; 25. Les diviseurs de 50 sont : 1;2; 5; 10 ; 25; 50. Donc : pgcd(25; 50) = 25 (car 50 est un multiple de 25).
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés.
+ β , où α et β sont deux nombres réels. Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
α correspond au nombre pour lequel la fonction atteint un extrémum (maximum ou minimum) et β correspond à la valeur de cette extremum ( β = f(α) ). (α,β) correspond aux coordonnées du sommet de la courbe qui représente la fonction polynôme de second degré.
La valeur la plus simple à trouver est celle de "b" car, comme son nom l'indique, elle correspond à l'ordonnée à l'origine, il suffit donc de repérer sur le graphique le point d'intersection entre la droite et l'axe des ordonnées: l'ordonnée de ce point correspond à "b".