Le point A de coordonnées. Un point M quelconque du plan P. Le projeté orthogonal H de A sur P, noté Le plan P d'équation cartésienne: ax + by + cz + d = 0.
Placer un point dans le plan :
On cherche sur l'axe des ordonnées le point d'ordonnée −1 et on trace une droite horizontale passant par ce point ; Le point A est à l'intersection de ces deux droites.
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Pour montrer qu'un point appartient à un plan donné par une équation cartésienne, on s'assure que ses coordonnées vérifient l'équation. Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t′.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Technique 1: on décompose les vecteurs jusqu'à obtenir: →AM=.. →AB+.. →AC Technique 2: on cherche α et β tels que →AM=α→AB+β→AC On écrit cette égalité vectorielle en coordonnée, on obtient un système, puis on résout. Si le système a des solutions, M appartient au plan (ABC).
Méthode utilisant l'appartenance des trois points A, B et C
donc : -3a + b + c + d = 0. Exprimons les variables a, b, c et d en fonction d'une par exemple a : on "retombe" bien sur la même équation ou sur une équation dont les coefficients sont proportionnels à ceux trouvés dans la première méthode.
Il faut d'abord trouver la règle de chaque droite (y = ax+b) et par la suite résoudre le système d'quations (le plus facil c'est par comparaison). Les valeurs de x et y sont les coordonnées du point d'intersection.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Point d'application
Pour une action répartie en surface on considère qu'il correspond au centre de la surface de contact entre auteur et receveur. Pour une action répartie en volume le point d'application correspond au centre du receveur.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Le repérage dans le plan cartésien
La position d'un point est donnée par un couple de nombres, les coordonnées (x,y) . Le premier nombre du couple correspond à la position horizontale du point (sa valeur sur l'axe des x ) alors que le deuxième nombre correspond à sa position verticale (sa valeur sur l'axe des y ).
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan .
Une équation cartésienne de droite est de la forme ax+by+c=0. On peut déterminer une équation cartésienne de la droite \left(d\right) lorsque l'on connaît un point de la droite et un vecteur directeur de la droite.
Tout plan P de l'espace admet une équation de la forme ax +by +cz = d avec (a; b ; c) = (0; 0; 0) • Si (a; b ; c) = (0; 0; 0) alors l'ensemble des points M de coordonnées (x ; y ; z) vérifiant ax +by +cz = d est un plan.
Rappeler la condition d'appartenance
On rappelle qu'un point M\left(x;y\right) appartient à la courbe représentative de f si et seulement si x\in D_f et f\left(x\right) = y. Le point A\left(0;2\right) appartient à C_f si et seulement si 0\in D_f et f\left(0\right) = 2.
Déterminer un vecteur directeur de (D). 2x – 3y + 1 = 0 est de la forme ax +by + c = 0 avec a = 2; b = –3 et c =1. La propriété ci-dessus permet donc d'affirmer que le vecteur est vecteur directeur de (D).
Dans le plan (SAC), on applique le théorème des milieux : I et K sont les milieux respectifs de [SA] et [SC], donc la droite (IK) est parallèle à la droite (AC). Or pour prouver qu'une droite est parallèle à un plan, il suffit de prouver que cette droite est parallèle à une droite de ce plan.
Obtenir les coordonnées d'un lieu
Ouvrez Google Maps sur votre ordinateur. Effectuez un clic droit sur le lieu ou la zone qui vous intéresse sur la carte. Vous trouverez vos coordonnées (latitude et longitude) au format décimal en haut de la fenêtre pop-up qui s'affiche.
Ouvrez l'application Google Maps. sur votre téléphone ou tablette Android. Entrez vos coordonnées dans le champ de recherche. Voici des exemples de formats qui fonctionnent : Degrés décimaux (DD) : 41,40338, 2,17403.
Le point étant considéré comme l'unique élément commun à deux droites sécantes, on représente habituellement le point par une croix (intersection de deux petits segments) plutôt que par le glyphe du même nom.