MÉTHODE 1. – Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Exemple : Montrons que la suite (Un) définie par Un = 5n + 3 est arithmétique. Un+1 - Un = [5(n + 1) + 3] - [5n +3]. Un+1 - Un = [5n + 5 + 3] - [5n +3].
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.
Le signe d'une expression de la forme dépend du signe de . Étudier le signe d'une expression de la forme revient à étudier séparément le signe des facteurs et puis à appliquer la règle des signes. Cela revient à résoudre les inéquations et . Pour cela, on utilise un tableau de signes.
Définition : Signe d'une fonction
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction 𝑓 ( 𝑥 ) sur un intervalle 𝐼 , le signe est positif si 𝑓 ( 𝑥 ) > 0 pour tout 𝑥 dans 𝐼 , le signe est négatif si 𝑓 ( 𝑥 ) < 0 pour tout 𝑥 dans 𝐼 .
En résumé, dans ces deux cas (∆ <0 ou ∆ = 0), si a est négatif, alors le trinôme est négatif ; si a est positif, alors le trinôme est positif. (Je dis bien a ! ). Si ∆ > 0 , alors le trinôme est partout du signe de a (encore lui !), sauf entre les racines où il est du signe contraire de a.
Règle des signes —
Le produit de deux nombres positifs est positif ; le produit de deux nombres négatifs est positif ; le produit de deux nombres de signes contraires (c'est-à-dire d'un nombre positif et d'un nombre négatif) est négatif.
Etudier le signe de f'(x) sur l'intervalle I
A l'inverse, si f'(x) est inférieure ou égale à 0, alors f est décroissante sur I. Pour connaître le signe de f', il suffit simplement de déterminer les valeurs de x pour lesquelles f'(x) s'annule, or on sait construire le tableau de signe d'une fonction de type ax + b.
En mathématiques, un tableau de signes est un tableau à double entrée qui permet de déterminer le signe d'une expression algébrique factorisée, en appliquant la règle des signes et en facilitant l'organisation du raisonnement.
La suite définie par un+1 = 2un avec u0 = 1 est une suite géométrique de raison 2. Les premiers termes de cette suite sont 1 ; 2 ; 4 ; 8 ; 16… Dire qu'une suite de termes non nuls est géométrique signifie que le quotient de deux termes consécutifs quelconques est constant, quel que soit n.
Forme explicite : si la suite (un) est géométrique de raison q et de premier terme u0, alors pour tout entier naturel n, un = u0qn. Plus généralement, pour tous entiers naturels n et p, un = up qn−p. si q = 1, alors S = u0 +u1 +···+un = u0 1−qn+1 1−q .
Le un (1) est un chiffre arabe, utilisé notamment pour signifier le nombre un. Le terme « chiffre » désigne ici le signe scriptural utilisé pour écrire des nombres ou des numéros.
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial). Cas particulier si U0 est le terme initial, alors Un=U0+nr.
Déterminer le sens de variation d'une suite revient à déterminer si elle est croissante ou décroissante. Une suite est croissante si u n + 1 ≥ u n . Une suite est décroissante si u n + 1 ≤ u n . Si une suite est croissante ou décroissante, elle est dite monotone.
Pour déterminer le sens de variation d'une fonction f , on étudie le signe de sa dérivée : f ′ ( x ) . Pour interpréter ce signe : Si f ′ ( x ) a le signe + sur un intervalle, alors f est croissante sur cet intervalle. Si f ′ ( x ) a le signe - sur un intervalle, alors f est décroissante sur cet intervalle.
Utiliser le graphique: Quand la parabole est au dessus des abscisses, ax2+bx+c est positif. Quand la parabole est en dessous des abscisses, ax2+bx+c est négatif. On présente les résultats sous la forme d'un tableau de signe.
Pour tracer le graphique d'une fonction rationnelle, il faut s'assurer que la règle de la fonction est écrite sous la forme canonique. La règle d'une fonction rationnelle sous la forme canonique est f(x)=ab(x−h)+k. f ( x ) = a b ( x − h ) + k .
Microsoft Word
La marche à suivre est très simple : En bas à gauche de votre fenêtre Word, cliquez sur le nombre de mots affiché. Une nouvelle fenêtre intitulée « Statistiques » apparaît. Le nombre de signes correspond à l'indication « Caractères (espaces compris) », soit 5815 dans l'exemple ci-dessous.
Deux règles de priorité
Quand il y a des parenthèses, on effectue en premier les calculs entre parenthèses. Quand il y a plusieurs signes opératoires, on effectue les multiplications et les divisions avant les additions et les soustractions.
Règle : pour additionner deux nombres de même signe, • on garde le même signe, • et on additionne les distances à zéro. Exemples : • (–3) + (–5) = –8 On garde le même signe – et on fait 3 + 5 pour trouver 8. (+6) + (+4) = +10 On garde le même signe + et on fait 6 + 4 pour trouver 10.
Pour obtenir le signe d'une telle fonction, il faut dresser un tableau de signes. Considérons x1, x2 et x3 les trois racines telles que x1 ≤ x2 ≤ x3. Dans le cas où x1 = x2, l'intervalle ]x1 ; x2[ n'existe pas. Dans le cas où x2 = x3, l'intervalle ]x2 ; x3[ n'existe pas.
Le signe de Δ indique le nombre de racines réelles : si Δ > 0 , alors il y a deux solutions réelles distinctes ; si Δ = 0 , alors il y a une solution réelle répétée ; si Δ < 0 , alors il n'y a pas de solutions réelles.
si ∆=0. - du signe de a à l'extérieur des racines et du signe opposé de a à l'intérieur des racines si ∆ > 0. P(x) = a(x − x1)(x − x2). Signe de (x − x1) - + + Signe de (x − x2) - - + Signe de (x − x1)(x − x2) + - + Signe de P(x) signe de a signe opposé de a signe de a 2 Page 3 2) Lorsque ∆=0, P(x) = a(x − x0)2.