Soient P ( x ) = a x 2 + b x + c P(x) = ax^2+bx+c P(x)=ax2+bx+c polynôme du second degré et Δ \Delta Δ son discriminant. Si Δ < 0 \Delta < 0 Δ<0, alors P P P est de signe constant égal au signe de a a a sur R R R.
Le polynôme du second degré n'admet alors aucune racine, il est de signe constant pour tout x de R. Pour déterminer le signe de P, on peut calculer P(0) = c. Le polynôme est donc du signe de c.
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction 𝑓 ( 𝑥 ) sur un intervalle 𝐼 , le signe est positif si 𝑓 ( 𝑥 ) > 0 pour tout 𝑥 dans 𝐼 , le signe est négatif si 𝑓 ( 𝑥 ) < 0 pour tout 𝑥 dans 𝐼 .
Le signe d'une expression de la forme dépend du signe de . Étudier le signe d'une expression de la forme revient à étudier séparément le signe des facteurs et puis à appliquer la règle des signes. Cela revient à résoudre les inéquations et . Pour cela, on utilise un tableau de signes.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Pour cela, on pose b=2b′ b = 2 b ′ . Le discriminant réduit vaut : Δ′=b′2−ac. Δ ′ = b ′ 2 − a c . Les racines sont alors données, dans le cas où le discriminant est positif, par la formule : x1=−b′−√Δ′a, x2=−b′+√Δ′a.
Méthode On détermine les racines du trinôme si elles existent. On utilise le théorème : un trinôme a x^{2}+b x+c est du signe de a, sauf entre les racines s'il y en a. En regardant le signe de a , on donne le signe du trinôme à l'aide d'un tableau de signes par exemple.
Pour obtenir le signe d'une telle fonction, il faut dresser un tableau de signes. Considérons x1, x2 et x3 les trois racines telles que x1 ≤ x2 ≤ x3. Dans le cas où x1 = x2, l'intervalle ]x1 ; x2[ n'existe pas. Dans le cas où x2 = x3, l'intervalle ]x2 ; x3[ n'existe pas.
Règle des signes —
Le produit de deux nombres positifs est positif ; le produit de deux nombres négatifs est positif ; le produit de deux nombres de signes contraires (c'est-à-dire d'un nombre positif et d'un nombre négatif) est négatif.
1) Etudier le signe de (Un+1) - (Un). - Si (Un+1) - (Un) ≥ 0 alors la suite (Un) est croissante. - Si (Un+1) - (Un) ≤ 0 alors la suite (Un) est décroissante. - Si (Un+1) - (Un) = 0 alors la suite (Un) est constante.
Δ = b² - 4ac.
Multiplications et divisions. - On ne change pas le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre positif. - On change le sens d'une inégalité quand on multiplie (ou on divise) les deux membres par un même nombre négatif.
Pour tracer un tableau de signes d'un produit de fonctions affines ( a x + b ) ( c x + d ) (ax+b)(cx+d) (ax+b)(cx+d), la marche à suivre est la suivante: Calculer la valeur qui annule a x + b ax+b ax+b.
si , le trinôme est du signe de a à l'extérieur des racines et du signe de -a entre les racines.
La règle des signes
Le produit de deux nombres de même signe est positif. Le produit de deux nombres de signes contraires est négatif.
Règle des signes : Lorsqu'on divise deux nombres relatifs : – s'ils sont de même signe, le résultat est positif ; – s'ils sont de signe contraire, le résultat est négatif.
Dans une écriture du type 5 × 7 = 35, la multiplication est symbolisée par le signe × de l'opération. 5 × 7 est l'écriture du produit (non effectué) des deux nombres 5 et 7.
Pour déterminer s'il s'agit d'un polynôme, nous devons d'abord vérifier si chacun des cinq termes est monôme. Cela signifie qu'elles doivent être le produit de constantes et de variables et que les variables doivent avoir des exposants positifs.
Pour trouver une racine évident en fait, vous essayer avec des nombres de base comme 1, -1, 2, 3, etc. Il faut maintenant trouver ce R(x) en effectuant une division polynomiale de Q par (x + 1). Donc : R(x) = x2 - x - 6 et P(x) = (x + 1)(x + 1)(x2 - x - 6).
Lorsqu'un polynôme est formé de deux termes, il est qualifié de binôme, alors qu'il est nommé trinôme lorsqu'il est composé de trois termes. Pour tous les cas où il y a quatre termes et plus, on qualifiera l'expression de polynôme.
Soit a x 2 + b x + c un trinôme du second degré en x admettant r 1 et r 2 comme racines distinctes ou égales. Alors on a les égalités suivantes : ( r 1 + r 2 ) = − b a et ( r 1 × r 2 ) = c a . Les réels r 1 et r 2 sont solutions de x 2 − S x + P = 0 avec S = r 1 + r 2 et P = r 1 × r 2 .
Dans le cas où Delta est nul, la factorisation du polynome P(x) est la suivante : 4) Si Delta est négatif, il n'existe aucune racine réelle pour l'équation, et le polynome n'est pas factorisable.