Pour obtenir le signe d'une telle fonction, il faut dresser un tableau de signes. Considérons x1, x2 et x3 les trois racines telles que x1 ≤ x2 ≤ x3. Dans le cas où x1 = x2, l'intervalle ]x1 ; x2[ n'existe pas. Dans le cas où x2 = x3, l'intervalle ]x2 ; x3[ n'existe pas.
Par conséquent, pour trouver les zéros de cette fonction, nous devons résoudre l'équation 𝑓 ( 𝑥 ) = 0 . Voici l'équation 1 3 ( 𝑥 − 4 ) = 0 . La multiplication par 3 donne 3 × 1 3 ( 𝑥 − 4 ) = 3 × 0 𝑥 − 4 = 0 . On ajoute ensuite 4 aux deux membres de l'équation 𝑥 − 4 + 4 = 0 + 4 𝑥 = 4 .
Une fonction (polynôme) de degré 3 est une fonction qui peut s'écrire sous la forme f(x) = ax3 + bx² + cx + d avec a un réel non nul, b, c et d trois réels. La fonction f définie par f(x) = –2x3 + 3x² – 5x + 1 est une fonction du troisième degré.
Comment trouver la racine évidente ? Lorsque l'énoncé demande de chercher une racine évidente, il s'agit d'utiliser sa calculatrice pour calculer le polynôme en certaines valeurs ($-3\ ; -2\ ; -1\ ; 0\ ; 1\ ; 2\ ; 3$). On trouve à l'aide de la calculatrice que $-2$ est une racine, c'est-à-dire $P(-2) = 0$.
Soit f une fonction polynôme de degré 3 définie sur par f(x) = ax3 + bx² + cx + d tels que a, b, c et d ∈ et a ≠ 0. La fonction dérivée f′ est alors définie sur par f′(x) + 3ax² + 2bx + c.
Utiliser le graphique: Quand la parabole est au dessus des abscisses, ax2+bx+c est positif. Quand la parabole est en dessous des abscisses, ax2+bx+c est négatif. On présente les résultats sous la forme d'un tableau de signe.
En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax3 + bx2 + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes.
Il n'est pas toujours nécessaire de calculer le discriminant Δ. On peut aussi chercher une racine évidente de l'équation du second degré en factorisant le polynôme. Résoudre x2 – 1 = 0 revient à résoudre x2 = 1 soit x = –1 ou x = 1. Résoudre x2 – 2x = 0 revient à résoudre x(x – 2) = 0 soit x = 0 ou x = 2.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Application à la résolution d'équations
En effet, si un polynôme P de degré n a une racine α, il peut se factoriser sous la forme P(X) = (X – α)Q(X), où Q est de degré n – 1. La résolution de l'équation (de degré n) P(x) = 0 se ramène alors à celle de l'équation (de degré n – 1) Q(x) = 0.
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
Théorème 1. x 3 + p x + q = 0 x^3 + p x + q = 0 x3+px+q=0. Cette formule permet de calculer une solution de l'équation, dans le cas où il n'y a pas de racine évidente.
Méthode : Pour étudier les variations d'une fonction polynome du 3° degré, il suffit de déterminer l'expression de sa fonction dérivée ( qui sera du 2° degré ), puis d'étudier son signe et de conclure avec le théorème.
Définition : Signe d'une fonction
Le signe d'une fonction permet de savoir quand la fonction est positive, négative ou nulle. Pour une fonction 𝑓 ( 𝑥 ) sur un intervalle 𝐼 , le signe est positif si 𝑓 ( 𝑥 ) > 0 pour tout 𝑥 dans 𝐼 , le signe est négatif si 𝑓 ( 𝑥 ) < 0 pour tout 𝑥 dans 𝐼 .
Ainsi, pour trouver le degré de 𝑓 de 𝑥, déterminons l'exposant de chaque terme. Trois 𝑥 puissance quatre a pour exposant quatre et deux 𝑥 au cube a pour exposant trois. Puisque le plus haut exposant des termes est quatre, il s'agit donc du degré du polynôme.
Si F=A/B F = A / B est une fraction rationnelle, alors le degré de F est défini par deg(F)=deg(A)−deg(B). Cette définition ne dépend pas du représentant choisi pour la fraction rationnelle, c'est-à-dire que si A/B=C/D, A / B = C / D , alors deg(A)−deg(B)=deg(C)−deg(D).
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
C'est donc une équation du second degré. Le nombre de solutions de l'équation ax^2+bx+c=0 (avec a\neq 0), dépend du signe du discriminant \Delta : Si \Delta<0, l'équation n'admet aucune solution réelle. Si \Delta=0, l'équation admet une unique solution (dite « double ») : x_0=\dfrac{-b}{2a}.
La racine carrée d'un nombre négatif n'existe pas.
Si le discriminant est strictement négatif, on essaie alors de calculer la racine carrée d'un nombre strictement négatif, qui n'a pas de solution dans les nombres réels. Cela signifie qu'il n'y a aucune solution réelle à l'équation du second degré donnée et qu'il doit donc y avoir deux racines non réelles.
La position de la parabole d'équation par rapport à l'axe (Ox) correspond au signe du trinôme : si la parabole est au dessus de l'axe (Ox), le trinôme est positif ; si la parabole est en dessous de l'axe (Ox), le trinôme est négatif. Cas où a > 0 , parabole tournée vers le haut.
Pour des polynômes à deux variables ou plus, le degré d'un terme est la somme des exposants des variables dans le terme ; le degré (parfois appelé degré total) du polynôme est à nouveau le maximum des degrés de tous les termes du polynôme. Par exemple, le polynôme x2y2 + 3x3 + 4y est de degré 4, le degré du terme x2y2.
Sachant aujourd'hui que tout nombre complexe non nul admet trois racines cubiques distinctes, on en déduit que si D est négatif, l'équation du 3e degré possède trois solutions réelles distinctes.