Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
On considère la droite (D) d'équation cartésienne 2x – 3y + 1 = 0. 1°) Déterminer un vecteur directeur de (D). 2x – 3y + 1 = 0 est de la forme ax +by + c = 0 avec a = 2; b = –3 et c =1. La propriété ci-dessus permet donc d'affirmer que le vecteur est vecteur directeur de (D).
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
L'équation cartésienne d'une droite est de la forme ax + by + c = 0 avec a, b et c ∈ℝ et au moins l'un des nombres a et b non nul.
La direction du vecteur est celle de la 'droite' dans laquelle est inclus le vecteur, le sens est donné par l'orientation du segment: 'vers la gauche' ou bien 'vers la droite', la norme correspond à la longueur du segment. Le sens est déterminé par la flèche.
Le coefficient directeur de (D) est connu lorsque l'équation de (D) est mise sous la forme y = mx + p appelée équation réduite de (D).
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. ( )≠ 0;0 ( ). Cette équation est appelée équation cartésienne de la droite D.
Si on connaît les coordonnées (a ; b) et (c ; d) de deux points d'une droite, on peut calculer son coefficient directeur m. On peut ensuite écrire immédiatement qu'une équation de cette droite est y - b = m(x - a).
Pour déterminer le point d'intersection des droites (D1) et (D2), on résout l'équation ax+b=a'x+b' et on détermine x. On déduit de x, la valeur de y.
Équation cartésienne d'une droite :
Si on a seulement l'équation réduite d'une droite de la forme y = m x + p y=mx+p y=mx+p, alors un vecteur directeur de la droite est u ⃗ L'équation cartésienne d'une droite n'est pas unique. Il est possible de multiplier les coefficients par un facteur k k k non nul.
D'après un théorème du cours, si ax + by + c = 0 est une équation cartésienne d'une droite (d), alors le vecteur est un vecteur directeur de (d) ; à l'aide du vecteur directeur , placer un second point de la droite à partir du point A ; relier les deux points pour obtenir la droite souhaitée.
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Trouver l'équation d'une droite
Exemple : Déterminer l'équation de la droite (AB) qui pasees par les points A(-2 ; 9) et B(1 ; 3). Méthode : Les points A et B n'ont pas la même abscisse. * L'équation de la droite est de la forme y = ax + b. (Il faut déterminer a et b).
Pour déterminer les solutions d'une équation de la forme f(x) = k, on lit les abscisses des points d'intersection de la courbe avec la droite horizontale d'équation y = k. Dans le cas d'une inéquation f(x) < k, on lit les abscisses des points de la courbe situés au-dessous de la droite d'équation y = k.
On cherche les coordonnées de deux points distincts A ( x A ; y A ) et B ( x B ; y B ) de la droite d . On sait alors que A B → est un vecteur directeur de d . Montrons que u → et A B → sont colinéaires. On sait que A B → ( x B − x A y B − y A ) et u → ( − b a ) .
Avec des vecteurs directeurs de chaque droite
Deux droites \left(d\right) et \left(d'\right) sont parallèles si et seulement si leurs vecteurs directeurs sont colinéaires. Soient \left(d\right) et \left(d'\right) les droites d'équations cartésiennes respectives 5x+2y+1=0 et -15x-6y+7=0.
Les droites d'équations x = c et x = k sont parallèles. Les droites d'équations x = c et y = px + d sont sécantes. Les droites d'équations y = px + d et y = p'x + d' sont parallèles p = p', c'est-à-dire si et seulement si elles ont le même coefficient directeur.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Il est facile de déterminer un vecteur directeur. Si la droite est écrite sous forme réduite (soit y=ax+b y = a x + b ), le vecteur →u(1;a) u → ( 1 ; a ) fait l'affaire. Si son équation apparaît sous forme cartésienne, on prend →u(−β;α) u → ( − β ; α ) ou →u(β;−α) u → ( β ; − α ) .
Définition : On appelle vecteur directeur de d tout vecteur non nul qui possède la même direction que la droite d. Propriété : Soit un point de l'espace et {⃗ un vecteur non nul de l'espace.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).