Réponse :pour calculer l'image d'un nombre, il suffit de remplacer x par la valeur souhaitée : f(3) = -5 × 3 = -15, donc l'image de 3 par f est -15. Exemple : Soit f la fonction linéaire définie par f(x) = 6x.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
f est une fonction linéaire donc son expression algébrique est f(x) = ax où a est le coefficient de cette fonction linéaire. On a donc f(2) = a×2 et on sait que f(2) = 7, d'où 2a = 7 donc a = 7 2 = 3,5 f est donc la fonction linéaire de coefficient 3,5.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Pour toute fonction linéaire f, la représentation graphique de f est une droite qui passe par l'origine du repère. Inversement, pour toute droite d qui passe par l'origine du repère et qui n'est pas l'axe des ordonnées, d est la représentation graphique d'une fonction linéaire.
Pour obtenir l'image d'un nombre a par une fonction f, on lit graphiquement l'ordonnée du point de la courbe de f ayant pour abscisse a.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f.
Si on connaît les coordonnées d'un point de la représentation de f , on obtient son coefficient en divisant l'ordonnée par l'abscisse. Par exemple : si A(– 0,5;100) alors a= 100 – 0,5 =– 200 . On considère une fonction linéaire f de coefficient a . On a donc f : x ax .
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x qui la vérifie.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
L'image de 4 par la fonction f est 0.
Réponse. L'image de -7 par la fonction f est 17.
Soit un repère du plan, la représentation graphique d'une fonction affine est une droite du plan non parallèle à l'axe des ordonnées. Le coefficient a est appelé coefficient directeur de la droite et b est appelé ordonnée à l'origine.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
L'image de 6 par la fonction f est 12.
Le seul antécédent de 12 par la fonction f est donc x = 4.
L'image de 3 par la fonction f est 0.
Pour construire la représentation graphique d'une fonction linéaire f dans un repère d'origine O de coordonnées (0 ;0), il suffit de connaître les coordonnées d'un seul point M ( x ; f ( x ) ) M(x\ ; f(x)) M(x ;f(x)) autre que O et de tracer la droite (OM).
Le deuxième point est souvent l'un de ceux dont l'abscisse est un entier, on choisit donc parmi les points (1 ; a+b), (2 ; 2a +b), (3 ; 3a +b) etc. Une fonction affine est toujours associée à une formule de type f(x) = ax + b, pour déterminer cette formule il faut donc trouver la valeur de "a" et celle "b".
MÉTHODE – Calcul du coefficient de proportionnalité Pour passer des valeurs d'une grandeur aux valeurs d'une autre, on peut utiliser le coefficient de proportionnalité. Pour trouver ce coefficient, il suffit d'une valeur de la 1re grandeur et de la valeur de la 2e qui correspond. On divise la 2e par la 1re.
A partir de la définition de la fonction
Exemple : Calculer l'image de 2 par la fonction affine f(x)=3x+1 f ( x ) = 3 x + 1 c'est calculer 3×2+1=7 3 × 2 + 1 = 7 . Donc l'image de 2 par f est f(2)=7 f ( 2 ) = 7 .
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.