On trace une droite verticale à partir de l'antécédent dont on veut trouver l'image. On note l'unique intersection entre cette droite et le graphe de f. On trace une droite horizontale en ce point. L'intersection de cette droite avec l'axe des ordonnées nous donne l'image recherchée.
Pour déterminer l'image de 2 par f, on commence par repérer 2 sur l'axe des abscisses, puis on lit l'ordonnée de l'unique point de la courbe d'abscisse 2. On peut lire que l'image de 2 par la fonction f est 3. Pour déterminer le ou les antécédents d'un nombre b par f , il suffit de résoudre l'équation ( )= f x b .
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Les solutions de l'équation f(x) = k sont les abscisses des points d'intersection de la courbe représentant la fonction f avec la droite horizontale d'équation y = k. Dans le cas particulier de l'équation f(x) = 0, les solutions sont les abscisses des points d'intersection de la courbe avec l'axe des abscisses.
Pour trouver l'ensemble image, nous devons trouver toutes les valeurs possibles que 𝑥 + 1 peut prendre. Puisque 𝑓 ( 0 ) = 1 est la plus petite valeur et que lorsque 𝑥 augmente (ou diminue), 𝑓 ( 𝑥 ) augmente, on peut conclure que l'intervalle est l'intervalle de 1 à l'infini.
Résoudre graphiquement l'équation f (x) = k, c'est trouver les abscisses des points de la courbe qui ont pour ordonnée k. Exemples : Soit f une fonction affine, définie sur , et sa courbe représentative. Résoudre l'équation f(x) = 3 à partir de sa droite représentative ci-dessous.
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
On donne la fonction affine f d'expression f(x)=x+3. Quelle est l'image de 3 par la fonction f ? L'image de 3 par la fonction f est 6.
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f.
Pour déterminer l'image de 2 par f, on doit partir de l'abscisse 2, puis on lit l'ordonnée du point de la courbe correspondant. Par lecture, on obtient -3,5. Donc l'image de 2 par f est -3,5.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Pour « lire » le coefficient directeur d'une droite tracée dans un repère, on rejoint deux de ses points par un parcours horizontal suivi d'un parcours vertical : ces parcours sont orientés (+ ou -) et mesurés (nombre d'unités).
But : trouver les coefficients p et d. Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
La fonction f est constante : sa représentation graphique est une droite d'équation : y = b. Cette droite est parallèle à l'axe des abscisses. On a f(x) = ax. La fonction f est linéaire : sa représentation graphique est une droite d'équation : y = ax, qui passe par l'origine du repère.
Le coefficient directeur a représente la « pente » de la droite qui représente une fonction linéaire : si a > 0 a>0 a>0 la droite « monte » ; si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale ; si a < 0 a<0 a<0 la droite « descend ».
Si a > 0 a>0 a>0 la fonction est croissante. Si a < 0 a<0 a<0 la fonction est décroissante. Une fonction affine est une fonction linéaire avec l'ordonnées à l'origine b = 0 b=0 b=0.
Résoudre l'équation f(x) = g(x) consiste à déterminer tous les réels x de D qui ont la même image par f et par g. Propriété Graphiquement, les solutions de f(x) = g(x) sont les abscisses des points d'intersection des courbes représentatives de f et de g.
Méthode 6 : Comment résoudre graphiquement l'équation f(x)=0 ? Pour résoudre l'équation f(x)=0, on trace Cf. Les abscisses des points d'intersection de Cf et de l'axe des abscisses sont les solutions !
Résoudre graphiquement une inéquation du type f(x) < k, revient à déterminer les abscisses des points de la courbe situés au dessous de la droite horizontale d'équation y = k. f(x) > k déterminer les abscisses des points de Cf situés au dessus de la droite horizontale y = k.
Si f(a)=b, alors f ⁻¹(b)=a, autrement dit si a est l'antécédent de b par la fonction f, alors a est l'image de b par la fonction réciproque de f.
Soient E et F deux ensembles. Définition 2.8. (Image directe ) Soit A ⊂ E et f : E −→ F, l'image directe de A par f est l'ensemble : f(A) = {f(x)/x ∈ A} ⊂ F.
On en a déduit que son ensemble image est l'ensemble des valeurs de é ou égales à . Donc pour déterminer l'ensemble image d'une fonction du second degré, il suffit de connaître l'ordonnée du sommet de sa parabole représentative et de savoir si cette parabole est orientée vers le haut ou vers le bas.