Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
Les diviseurs d'un nombre
En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier. L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 .
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
a) 220 : 1 = 220 220 : 2 = 110 220 : 4 = 55 220 : 5 = 44 220 : 10 = 22 220 : 11 = 20 Donc tous les diviseurs de 220 sont 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110,et 220.
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
Les diviseurs de 175 sont : 1, 5, 7, 25, 35, 175.
De fait, 200 est composé et possède exactement douze diviseurs : 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100 et 200. Mais cette propriété n'établit pas un record pour lui car 60, qui est plus petit, possède lui aussi douze diviseurs.
Les diviseurs de 126 sont : 1 ; 2 ; 3 ; 6 ; 7 ; 9 ; 14 ; 18 ; 21 ; 42 ; 63 ; 126.
Somme des diviseurs propres de 284 : 1+2+4+71+142=220. A ce sujet, on attribue à Pythagore une citation : « Un ami est l'autre moi-même comme sont 220 et 284. » Le second couple de nombres amiables fut découvert par Pierre de Fermat (1601 ; 1665), il s'agit de 17296 et 18416.
Ainsi, les entiers qui divisent à la fois les nombres 126 et 90 sont donc : - 1 ; - 2 ; - 3 ; - 2 × 3 = 6 ; - 32 = 9 ; - 2 × 32 = 18. c. D'après la question précédente, le grand entier qui divise à la fois les nombre 126 et 90 est 18.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100.
Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 18 ; 24 ; 36 ; 72. ...
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
L'ensemble des diviseurs de 132 est : 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132.
Diviseurs de 120 = {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}. Ils sont 16 = 42 = 24, un carré et un bicarré.
Les diviseurs de 25 sont 1, 5 et 25.