On s'explique : Si f(x) = x²+1, alors on note sa dérivée f ' (x) = 2x +0, soit 2x. Prenons l'exemple de f(x) = 10x²+5x +2 : on obtient f ' (x) = 10*2x2-1+5, soit f ' (x) = 20x +5 : la dérivée d'une constante est nulle. On calcule chaque dérivée avec puissances de cette manière, donc si f(x) = x3, alors f ' (x) = 3x².
Lorsque la courbe représentant une fonction est au-dessus de l'axe 𝑥 des abscisses, le signe de l'expression de la fonction est positif. Lorsque la courbe représentant une fonction est en-dessous de l'axe 𝑥 des abscisses, le signe de la fonction est négatif.
Le taux de variation permet d'étudier, en pourcentage, l'évolution de la valeur d'une variable sur une période donnée. Pour cela, il faut calculer la variation absolue, c'est-à-dire faire la différence entre la valeur d'arrivée et la valeur de départ, que l'on divise par la valeur de départ, le tout multiplié par 100.
On détermine graphiquement le signe de f'\left(x\right) (positif lorsque la courbe est située au-dessus de l'axe des abscisses, négatif sinon). On identifie sur le graphique les abscisses des points d'intersection de la courbe avec l'axe des abscisses.
Définition de la fonction affine
La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Reconnaître une fonction affine
la variable indépendante (x) est la même, et que la variation des valeurs consécutives de la variable dépendante (f(x)) est constante, et qu'elle ne passe pas par l'origine (0,0), elle représente une fonction affine.
Taux de variation=VDVA−VD. Lecture du résultat : Pour lire le résultat, on commence par le multiplier par 100. La phrase se lit de la façon suivante : « Entre l'année de départ et l'année d'arrivée, la variable a augmenté/diminué de T % », où T est le taux de variation multiplié par 100.
(a, b et c étant des réels, avec a non nul). Trouver les racines d'un trinôme du second degré, signifie résoudre l'équation ax² + bx + c = 0. Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac.
Pour une fonction f dérivable sur un intervalle I, on a les théorèmes suivants : si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I.
Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
Soit le polynôme P(x) = ax² + bx + c (a ≠ 0) et Δ son discriminant. Si Δ ≤ 0, alors P(x) est du signe de a. Si Δ > 0, alors P(a) admet deux racines x1 et x2.
Pour tracer la courbe représentative d'une fonction : on place sur le graphique les points donnés par le tableau de variations et on trace les éventuelles tangentes connues. Tracer une courbe à partir d'un tableau de variation est une compétence fondamentale en mathématiques et en sciences.
Le tableau de valeurs d'une fonction f regroupe les coordonnées d'un certain nombre de points de la courbe à intervalles réguliers. On appelle "pas" l'écart régulier entre deux valeurs successives de x. Ici, on défini un intervalle sur lequel on veut étudier la fonction f.
On note souvent f la fonction et x le nombre de départ. On note f(x) le nombre d'arrivée. Par exemple, fonction f(x) = 2x + 3 est une fonction qui a tout x associe 2x+3. Si on lui donne 5, elle ressortira Si on lui donne (-4) elle lui associera et ainsi pour chaque nombre x dont on souhaite obtenir la valeur f(x).
Une fonction est une relation qui, à chaque valeur de la variable x, fait correspondre au plus une (0 ou 1) valeur de y. Pour exprimer que y dépend de x, on écrit : y = f(x).
La variation des stocks en comptabilité
La formule complète est la suivante : Stock initial + Achats - Stock final = Coût des marchandises vendues. Cette formule peut être remplacée par le chiffre de la variation des stocks.
Pourquoi la variation des stocks est importante? Les variations de stock sont importantes à prendre en compte pour le bilan financier de l'entreprise. En effet, un produit stocké ou invendu représente toujours un coût pour une entreprise en matière de personnel, d'entretien, de locaux, etc.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Plusieurs étapes sont nécessaires pour lire un tableau. Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes.
Soit la fonction linéaire f définie par f(x) = – x. Sa représentation graphique est une droite D qui passe par l'origine. Pour construire D, il suffit de déterminer les coordonnées d'un autre de ses points, c'est-à-dire un nombre et son image par f. Par exemple : f(1) = –1.