Les nombre réels sont les abscisses des points d'une droite munie d'un repère : il s'agit donc de tous les nombres connus en seconde, qu'ils soient naturels, relatifs, rationnels ou irrationnels. L'ensemble des nombres réels se note IR. Exemples : V(2) ; 1,4 ; -3/8 ; 2 ; Pi ; ....
Les nombres naturels 0 ; 1 ; 2 ; 3 ; 4 [...], les entiers relatifs [...] -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 [...], les nombres rationnels (1/2, -3/4 par exemple) sont aussi des nombres réels.
Les nombres irrationnels sont des nombres réels qui ne peuvent pas être exprimés sous forme de fraction simple. Ils ne peuvent pas être énoncés sous la forme d'un rapport comme p/q, où p et q sont tous deux des entiers, et q ≠ 0.
Un nombre réel est un nombre décimal qui peut être infini. On ne peut donc pas dire quel est le nombre réel après 7. Ça pourrait être 7.0001 ou même 7.00000000001.
L'ensemble des nombres rationnels est noté ℚ. 2 ∉ ℚ. L'ensemble des nombres réels est noté ℝ.
Le symbole R désigne l'ensemble des nombres réels. Tous les nombres naturels, entiers, décimaux et rationnels sont des nombres réels.
Les nombre réels sont les abscisses des points d'une droite munie d'un repère : il s'agit donc de tous les nombres connus en seconde, qu'ils soient naturels, relatifs, rationnels ou irrationnels. L'ensemble des nombres réels se note IR. Exemples : V(2) ; 1,4 ; -3/8 ; 2 ; Pi ; ....
On appelle ces nombres : les entiers naturels. Mais parfois, il n'y a rien à compter, le zéro est aussi un nombre entier naturel. C'est d'ailleurs le tout premier. L'ensemble des nombres entiers naturels se note ℕ (vient de l'italien « Naturale »).
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs.
Oui, 0 appartient à Q. En effet, 0 peut être écrit comme la fraction 0/1, où 0 est un entier et 1 est un entier non nul.
L'ensemble ℝ
Un nombre réel est non seulement un nombre rationnel, mais peut aussi être un nombre dont le développement décimal est infini, et non périodique. Exemples : …. -5/4, -4, -4.2, -3, -2, -1.524, -1/2, 0, +0.7, +1, +2, +2.41, +3, +4/5, +5, +6, +6.75, +7/2, +8…
Le nombre 9 peut être exprimé par 9/1, 9 et 1 étant tous deux des nombres entiers. Dans toutes les formes décimales terminales, 0.5 peut être écrit comme 1/2, 5/10 ou 10/20. √81 est un nombre rationnel puisqu'il peut être réduit à 9.
- Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire. On note Re(z) = a et Im(z) = b . Remarques : - Si b = 0 alors z est un nombre réel. - Si a = 0 alors z est un nombre imaginaire pur.
Où l'on démontre que racine de 2 ne peut pas être le quotient de deux entiers et que c'est donc un nombre irrationnel.
Explications (2)
Lorsque tu dois trouver, par exemple, le 2/3 d'un nombre, le dénominateur te dit en combien de parties égales tu dois diviser ton nombre (ici 3) et que ton numérateur te dit combien de parties utiliser (ici 2).
Deux nombres réels sont dit inverses si leur produit est égal à 1. Exemples : 2 et 0,5 sont inverses car 2 × 0,5 = 1, on dit également que 0,5 est l'inverse de 2, ou bien que 0,5 est l'inverse de 2. 1 est son propre inverse.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
Il peut être positif ou négatif. Par exemple 1/2, 12,45 et 0,415464 sont des nombres décimaux. Par contre, le nombre 1/3 = 0,3333333... n'est pas décimal, puisque qu'il a une infinité de 3 après la virgule.
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Quatre est le nombre entier naturel suivant trois et précédant cinq. Il s'écrit 4. C'est un nombre qui comporte un unique chiffre, à savoir 4.
Ces deux définitions coexistent encore aujourd'hui. Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
Propriétés. La suite des nombres naturels est : N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …}. Le nombre 0 est un nombre naturel. L'ensemble des nombres naturels est un ensemble infini.
L'ensemble des nombres réels, noté ℝ, est alors un corps totalement ordonné, c'est-à-dire qu'il est muni des quatre opérations arithmétiques satisfaisant les mêmes règles que celles sur les fractions et ces opérations sont compatibles avec la relation d'ordre.
Une notion mathématique des plus abstraites qui ne paraît pas si simple à définir et dont on peut même remettre en doute l'existence. L'infini ne nous est pas accessible et ne fait pas partie du monde réel.
Les nombres entiers sont tous les nombres qui ne possèdent pas de nombres après la virgule (de décimales). Les nombres naturels et les nombres entiers négatifs font ensemble les nombres entiers relatifs, c'est-à-dire positifs ou négatifs. 5 est un nombre entier : il ne possède pas de décimales.