En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
C'est en effet l'Extrême-Orient qui invente l'écriture décimale positionnelle au IIIe siècle avant J. -C. Au nombre de dix, les chiffres correspondent à un système d'écriture décimale dite positionnelle, où un nombre est représenté dans un système de base 10 selon une notation positionnelle.
1 est le seul nombre parfait d'ordre 1 (voir nombre parfait multiple). 1 est égal à la somme de ses chiffres dans tout système de numération de base différente, c'est un nombre Harshad complet. 1 est un nombre méandrique, un nombre semi-méandrique et un nombre méandrique ouvert.
Une base b utilise b chiffres. Pour les bases jusqu'à dix inclus, on utilise les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. + 25 × 60 + 12 ; ce nombre est composé de trois chiffres : 1, 25 et 12.
Le système octal est quelquefois utilisé en calcul à la place de l'hexadécimal. Il possède le double avantage de ne pas requérir de symbole supplémentaire pour ses chiffres et d'être une puissance de deux pour pouvoir grouper les chiffres.
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers.
Pourquoi la base 10 plutôt que la base 12 ? Sans doute parce que 5 et 2, diviseurs de 10, divisent TOUS les nombres. Ainsi, la division de n'importe quel entier par une puissance de 10 donne un nombre "décimal".
Chaque base 4, 8 et 16 est une puissance de 2, donc la conversion de et vers le binaire est implémentée en faisant coïncider chaque chiffre avec 2, 3 ou 4 chiffres binaires, ou bits. Par exemple, en base 4, 302104 = 11 00 10 01 00.
Le système décimal est une « manière de compter » en utilisant 10 chiffres. Usuellement, nous comptons en base 10, c'est-à-dire que nous possédons 10 chiffres, numérotés de 0 à 9, que nous utilisons en boucle, et qui ont une valeur différente en fonction de leur placement dans le nombre.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le 1 ici 1=1 n'est pas un chiffre c'est un nombre et pour le nombre 1 1=1 est faux. Car on n'arrive pas à faire une quantité identique d'un seule 1 pour deux 1 identique. Mais pour 2 ou 3 c'est possible.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Un chiffre est tout d'abord un caractère utilisé pour représenter un nombre. En français, on utilise les chiffres arabes (0 à 9) et, dans certains contextes, les chiffres romains (I, V, X, L, C, D, M). Exemples : - Ma fille de 4 ans a appris à écrire ses chiffres jusqu'à 5.
En base douze, on écrit tous les entiers à l'aide de douze 'chiffres': 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B et la position de chaque chiffre dans l'écriture donne le nombre d'unités, le nombre de douzaines, de douzaines de douzaines etc.
Si le nombre se termine par un zéro, le dernier zéro est remplacé par un : par ex. 100 (4) + 1 (1) = 101 (5).
0 est le chiffre des centaines et 256 080 est le nombre de centaines. 8 est le chiffre des unités de mille et 25 608 est le nombre d'unités de mille. 0 est le chiffre des dizaines de mille et 2 560 est le nombre de dizaines de mille. 6 est le chiffre des centaines de mille et 256 est le nombre de centaines de mille.
- Comme pour la partie entière, la position des chiffres de la partie décimale définit leur valeur : - le premier chiffre derrière la virgule est le chiffre des dixièmes ; - le deuxième chiffre derrière la virgule est le chiffre des centièmes ; - le troisième chiffre derrière la virgule est le chiffre des millièmes…
En écriture décimale, la valeur approchée de Pi, nombre irrationnel, est de 3,141 592 653 589 793 238 462 643 383 279. Et s'il est arrondi, par mesure de commodité, à 3,14 au collège, les grandes écoles scientifiques imposent à leurs étudiants de mémoriser parfaitement la suite des 31 premiers chiffres composant Pi.
Le système de numération à base 2 est un moyen de représenter les nombres avec deux symboles: 0 et 1. Selon sa place, le symbole indique la présence d'une puissance de 2 ou non. Chaque position successive vers la gauche indique une valeur deux fois plus importante que celle juste à droite.