Non, la variance est toujours positive ou nulle. L'écart type vaut la racine carrée de la variance or on ne peut pas calculer la racine carrée d'un nombre négatif.
- Etant calculée comme l'espérance d'un nombre au carré, la variance est toujours positive ou nulle. - Si la variance est nulle, cela signifie que la moyenne des carrés des écarts par rapport à la moyenne est nulle et donc que la variable aléatoire est une constante.
La variance, habituellement notée s2 ou σ2, est définie comme la moyenne du carré des écarts à la moyenne des valeurs de la distribution. Le calcul de la variance est nécessaire pour calculer l'écart type.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
Variance positive ou nulle
Quand elle est nulle, cela veut dire que la variable aléatoire correspond à une constante. Toutes les réalisations sont donc identiques.
En pratique, la variance de l'échantillon (avec N) est à peu près sans intérêt, donc on utilise, quand on a un échantillon, la variance d'échantillon (avec N-1), plus utile. Cependant, quand N est grand, les deux nombres sont très proches, et la différence devient peu utile.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
en probabilité, on définit de même la variance de la variable aléatoire X, que l'on note V(X), et l'écart-type σ(X) : la variance est égale à la moyenne des carrés des écarts à l'espérance. Dans ce calcul, on pondère la moyenne par les probabilités (comme on le fait pour le calcul de l'espérance).
Si l'écart-type est faible, cela signifie que les valeurs sont peu dispersées autour de la moyenne (série homogène) et inversement (série hétérogène).
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
On appelle écart-type de l'échantillon la racine carrée de la variance. L'avantage de l'écart-type sur la variance est qu'il s'exprime, comme la moyenne, dans la même unité que les données. On utilise parfois le coefficient de variation, qui est le rapport de l'écart-type sur la moyenne.
La variance d'une série statistique apparait dans le calcul des coefficients de la régression linéaire. L'analyse de la variance (ANOVA) rassemble des méthodes d'études de comparaisons entre échantillons sur une ou plusieurs variables quantitatives.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Ce test est souvent utilisé pour valider l'hypothèse de leur égalité (appelée homoscédasticité1). La comparaison des variances s'avère donc utile comme test complémentaire lorsqu'on souhaite tester l'égalité de deux moyennes (cas des petits échantillons indépendants).
Nous savons que la variance est une mesure du degré de dispersion d'un ensemble de données. On la calcule en prenant la moyenne de l'écart au carré de chaque nombre par rapport à la moyenne d'un ensemble de données. Pour les nombres 1, 2 et 3, par exemple, la moyenne est 2 et la variance, 0,667.
L'écart-type s'obtient simplement en calculant la racine carrée de la variance. D'où σ(X)=Var(X) =4,41 =2,1.
L'écart-type est une mesure la dispersion d'une série statistique autour de sa moyenne. Plus la distribution est dispersée c'est-à-dire moins les valeurs sont concentrées autour de la moyenne, plus l'écart-type sera élevé.
Un exemple de l'interet de la variance par rapport a l'ecart absolu : Si on prend deux variables independantes X et Y, la variance de leur somme est la somme de leurs variances, ce qui n'est pas le cas avec l'ecart absolu moyen. Le carré vient du fait qu'on considère la distance euclidienne.
Plus la valeur du coefficient de variation est élevée, plus la dispersion autour de la moyenne est grande. Il est généralement exprimé en pourcentage. Sans unité, il permet la comparaison de distributions de valeurs dont les échelles de mesure ne sont pas comparables.
– Si la valeur de la covariance est de signe négatif cela signifie que les variables varient en sens inverse : les sujets qui ont des valeurs fortes sur une des deux variables auront tendance à avoir des valeurs faibles sur l'autre variable.
La variance d'une D.G.1
Moyenne des carrés des différences entre les observations et leur moyenne arithmétique. Somme des carrés des différences entre les observations et leur moyenne arithmétique, divisée par n-1 (au lieu d'être divisée par n, le nombre d'observations, comme pour la variance « classique »).
Dans les deux cas, il suffit de multiplier la variance ou la covariance par n/(n-1) pour avoir ce que l'on appel "variance corrigée" et "covariance corrigée". On a donc deux équations y=ax+b , avec des différences pour le moins minime .
En termes synthétiques la décomposition de la variance s'énonce variance totale = variance intra + variance inter , ou encore variance totale = moyenne des variances + variance des moyennes .
Modèle de régression simple.
· La variable Y est appelée variable expliquée. · La variable X est appelée variable explicative. · La variable e est une variable aléatoire appelée variable résiduelle. · La variance notée se2 de la variable e est appelée variance résiduelle.