Si les deux vecteurs ont le même sens, alors leur produit scalaire sera toujours un nombre POSITIF. Mais, si les vecteurs sont de sens opposés, alors leur produit scalaire sera NEGATIF. Si un des vecteurs est nul ( égal à 0) alors le produit scalaire des deux vecteurs est nul (égal à 0).
Si A se trouve entre H et B, le produit scalaire est négatif et positif sinon. On remarque que si H est confondu avec A, alors le produit scalaire est nul.
Le produit scalaire de deux vecteurs est un nombre réel, qui peut être positif, négatif ou nul. sont bien orthogonaux. , on a . des vecteurs et a un nombre réel.
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Un produit scalaire nul signifie que les vecteurs sont perpendiculaires, c'est-à-dire, que l'angle entre eux est °. Cela suppose qu'aucun des vecteurs n'est le vecteur nul. Un produit scalaire nul est la caractéristique définitoire des vecteurs orthogonaux.
Le produit scalaire est très important en mathématiques, car il caractérise l'orthogonalité : les droites (AB) et (CD) sont orthogonales si, et seulement si, −−→AB⋅−−→CD=0. A B → ⋅ C D → = 0. En outre, les calculs de longueur sont aussi reliés au produit scalaire, par la relation AB=√−−→AB⋅−−→AB.
Si l´angle (OA,OB) est inférieur à PI/2 le produit scalaire est positif, si cet angle est supérieur à PI/2 le produit scalaire est negatif et si cet angle est égal à PI/2 le produit scalaire est nul.
Le produit scalaire est donc du signe du cosinus, c'est-à-dire positif si l'angle formé par les vecteurs est aigu et négatif si l'angle est obtus (à visualiser sur le cercle trigonométrique).
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si ϕ : E × E → K est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si 〈·|·〉 est un produit scalaire sur E alors pour tout x ∈ E, 〈x|x〉 ≥ 0. On pose alors x = √〈x|x〉 qu'on appelle la norme de x.
Le produit scalaire et le produit vectoriel sont deux calculs réalisés à partir deux vecteurs de même nombre de composantes. Ils ont en revanche des différences fondamentales: Avec le produit scalaire on obtient un scalaire (c'est-à-dire un nombre) tandis qu'avec le produit vectoriel on obtient un vecteur.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Le produit scalaire est distributif : ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑤 = ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑢 ⋅ ⃑ 𝑤 . Considérons une propriété utile du produit scalaire lorsqu'on s'intéresse au produit scalaire d'un vecteur par lui-même, qu'on va calculer dans l'exemple suivant.
Son sens dépend du signe de m : si m est positif, alors b aura le même sens que a, alors que si m est négatif, alors b sera de sens opposé à celui de a.
le produit vectoriel de deux vecteurs est nul si et seulement si ces deux vecteurs sont colinéaires.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
où le point centré représente le produit scalaire(*). La vérification du fait que ce produit est associatif est aisée. Elle repose sur deux propriétés classiques du produit vectoriel, à savoir le fait qu'il agit par applications antisymétriques et l'identité du double produit vectoriel.
Le produit vectoriel est commutatif, quel que soit l'ordre dans lequel interviennent les deux vecteur, le résultat reste le même.
La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs.
Pour savoir si →u, →v et →w sont coplanaires:
On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires. - Sinon on cherche 2 nombres a et b tels que →w=a→u+b→v.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Le produit vectoriel de deux vecteurs est une façon précise de les multiplier. Il s'appelle le produit « vectoriel » car son résultat est un vecteur, à l'opposé du produit « scalaire » dont le résultat est un scalaire. Le produit vectoriel de deux vecteurs et se note u → ∧ v → ou u → × v → .
On calcule la matrice produit C = A B . Chacun des éléments de la matrice est le produit scalaire du vecteur associé à l'une des lignes de la matrice et du vecteur associé à l'une des colonnes de la matrice . Plus précisément c i , j est le produit scalaire du vecteur a i → et du vecteur b j → .
Le produit vectoriel est utilisé dans de nombreux domaines de la physique. Il peut notamment être utile pour calculer le couple sur un objet. Prenons l'exemple d'une roue de voiture qui peut tourner librement autour de son axe.