Son nom est trompeur, le trou noir n'a rien d'un trou ! Il provient de la mort d'une étoile, mais seulement d'une étoile suffisamment massive (plusieurs fois la masse du Soleil). Quand elle arrive en fin de vie, cette étoile s'attire sur elle-même et parvient à résister à cette attraction en brûlant de l'hydrogène.
C'est pourquoi nous ne pouvons pas observer de trous noirs dans l'espace : ils ont englouti toute la lumière. Bien que les astronomes ne puissent pas voir les trous noirs, ils savent qu'ils sont là par l'effet qu'ils ont sur les objets qui s'en approchent un peu trop.
Au centre d'un trou noir se situe une singularité gravitationnelle. Pour tout type de trou noir, cette singularité est « cachée » du monde extérieur par l'horizon des événements.
Emplacement. Les trous noirs se forment à la fin de la vie d'une grosse étoile, alors ils se trouvent çà et là dans les galaxies. La plupart des galaxies ont un trou noir supermassif en leur centre, comme c'est le cas pour la nôtre, la Voie lactée.
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Le principe d'un trou noir est que sa force gravitationnelle est tellement forte que rien ne peut en ressortir, même pas les rayonnements électromagnétiques (lumière visible, rayons X, gamma, etc.) qui se déplacent dans le vide à la vitesse de la lumière.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
Cela peut sembler effrayant, mais ce n'est pas le cas. Vous n'avez pas à craindre les trous noirs. Plus de 100 millions de trous noirs errent probablement dans notre galaxie à eux seuls, et ce sont des objets fascinants dans le cosmos.
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
C'est mission impossible. Le trou noir, c'est une sphère… noire dont aucun rayon lumineux ne peut sortir. En revanche, la matière qu'il aspire forme un disque très lumineux autour de lui.
Un trou noir est une région de l'espace où le champ gravitationnel est si intense que toute matière qui y pénètre (même la lumière) ne peut plus en sortir. Autour du trou noir, la matière qu'il gobe se déplace en orbite. Elle est rassemblée dans ce qu'on appelle un disque d'accrétion.
Ce trou noir supermassif a une masse équivalente à plus de 30 milliards de fois celle du soleil, selon une étude parue dans une revue scientifique britannique.
Mauvaise nouvelle pour la Terre
Les forces gravitationnelles responsables de la spaghettification entreraient en action : la surface du globe la plus proche du trou noir serait soumise à une force bien supérieure à celle qui s'exercerait de l'autre côté, entraînant l'arrêt de mort de la planète.
Généralement, les trous noirs sont considérés comme sphériques. Et si un corps massif non sphérique venait à s'effondrer, quel serait le résultat ?
Le terme « trou noir » a été inventé par le physicien américain John Wheeler, en 1967, pour décrire une concentration de masse-énergie qui s'est effondrée gravitationnellement sous sa propre force d'attraction et qui est devenue si compacte que même les photons ne peuvent se soustraire à cette force gravitationnelle.
Le réseau mondial de télescopes EHT a dévoilé ce jeudi 12 mai la première photo du trou noir de notre galaxie, Sagittaire A*.
Le 10 avril 2019, l'équipe de l'Event Horizon Telescope (EHT) dévoilait pour la première fois la « photo » d'un trou noir supermassif, celui niché au centre de la galaxie M87. Sur ce cliché, un disque noir se détache, entouré d'un anneau de lumière.
Pas n'importe lequel : il s'agit du trou noir supermassif situé au centre de la galaxie Messier 87 (M87), nommé M87*. Ce colosse de 6,5 milliards de fois la masse du Soleil évolue au cœur de sa galaxie, à 55 millions d'années-lumière de la Terre.