C'est un nombre inférieur à 1 et supérieur à 0,9, car la moyenne de deux nombres se situe toujours entre les deux nombres considérés. L'écriture décimale de m commence donc par 0,9. Cette moyenne m est aussi supérieure à 0,99 et inférieure à 1 ; c'est donc un nombre dont l'écriture décimale commence par 0,99.
Re : 0.99999... = 1 ???? L'inverse de 0.99999..., ou 2-0.99999, c'est 1. La notation 1.0000....1 n'a pas de sens : il n'y a pas de dernier chiffre au développement décimal d'un nombre.
Réponses. Non, on ne peut pas démontrer que 1+1=2. C'est effectivement une convention que les mathématiciens ont choisit pour s'entendre. En fait, il faut plutôt considérer que 2 est le nombre qui vaut 1+1.
Combien font 1+1 ? Avant toute chose, on va quand même répondre à la question ; dans la plupart des cas, 1+1=2. Mais d'après Jean-Claude Van Damme, 1+1=11 (parce que ça serait beau), et d'après les lois universelles de l'amour, 1+1=3 (ou 4, 5, 6 pour ceux qui veulent beaucoup d'enfants).
Dans la pièce Dom Juan (1665) de Molière, on peut lire : « Je crois que deux et deux sont quatre, Sganarelle, et que quatre et quatre sont huit. » (acte III, sc. 1), ce à quoi Sganarelle, le valet du libertin répond : « Votre religion, à ce que je vois, est donc l'arithmétique ? »
La conjecture de Syracuse – ou encore de Collatz –, un problème mathématique à l'énoncé élémentaire, défie les chercheurs depuis plus de quatre-vingts ans. Elle vient cependant de connaître une avancée importante grâce au mathématicien Terence Tao.
Re : 1+1=3
voila la demonstration de 1+1=3 de bernard werber ! La fusion des talents est supérieure à leur simple addition.
Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz. Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède, Thābit ibn Qurra, Pierre de Fermat et Isaac Barrow notamment.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide. Il est le plus petit des entiers positifs ou nuls.
c'est incroyable ce qu'on peut lire. pour ce qui est de 1+1=2, c'est quelque chose qu'on a montré en algèbre. De fait, on définit des règles simples, et à partir de là, on pourrait dire que 2 est le résultat de l'element neutre de la seconde loi du groupe, composé avec lui même par la première loi du groupe.
Al Khwârizmî est né vers 780 et mort vers 850. Malgré son utilité dans le monde des mathématiques, le savant reste mal connu.
Les mathématiques sont apparues dans toutes les civilisations, probablement avant l'apparition de l'écriture. De la civilisation de Sumer par exemple, on conserve des écrits mathématiques datant de plus de 2000 ans avant Jésus-Christ. Les mathématiques sont utiles, elles servent à comprendre le monde.
Il s'agit d'Artur Avila, un Français d'origine brésilienne directeur de recherche au Centre national de la recherche scientifique, de Manjul Bhargava, un Américain professeur à l'Université de Princeton, et de Martin Hairer, un Autrichien, chercheur à l'Université de Warwick en Grande-Bretagne. Un profil polyvalent.
Re : 1+1=1? Ben mathématiquement ce n'est pas possible donc il n'y a rien à comprendre. Sinon, on aurait parfaitement pu dire que 1+1=1 mais çà n'aurait strictement servi à rien. A la base, on utilise quand même les maths pour compter et dire qu'une chêvre + une chêvre çà fait une chêvre, çà me semble un peu idiot.
la preuve la plus simple: 1*0=2*0. Après division par 0 (que nous supposerons non nul), on voit que 1=2.
La fonction de Syracuse
Démontrer la conjecture de Syracuse, c'est prouver que pour tout k ∈ I , il existe un entier n ≥ 1 tel que : f n(k) = 1. Désignons par E l'ensemble des nombres impairs k ∈ I pour lesquels il existe un entier n ≥ 1 tel que : f n(k) = 1. Il s'agit de montrer que E = I.
En 1952, lors d'une visite à Hambourg, Collatz expliqua son problème à Helmut Hasse. Ce dernier le diffusa en Amérique à l'université de Syracuse : la suite de Collatz prit alors le nom de « suite de Syracuse ». Entre-temps, le mathématicien polonais Stanislas Ulam le répand dans le Laboratoire national de Los Alamos.
Comment fonctionne la suite de Conway ? Pour générer un terme de la suite, utiliser le précédent en le lisant chiffre après chiffre et regroupant les chiffres qui se répètent consécutivement. La suite commence généralement avec 1 comme premier terme (aussi appelé graine ).
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
L'algèbre (de l'arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques.
Al-Khwarizmi, dont le nom a été latinisé en Algoritmi, est considéré de nos jours comme le père de l'algèbre et le fondateur des mathématiques arabes.
La preuve de 1+1 = 2 de Alfred North Whitehead et Bertrand Russell apparait à la page 362 du livre Principia Mathematica. Ce livre fait 674 pages. Il faut donc construire des éléments mathématiques pendant 362 pages avant d'arriver à la preuve de ce résultat simple : 1 + 1 = 2.
Par exemple, un+1 est le terme de rang n + 1 (celui qui suit un) alors que un +1 est le terme de rang n augmenté de 1. 2) Attention ! (un ) désigne la suite alors que un est un nombre. 3) Une suite n'est pas forcément définie à partir de n = 0.