D'ailleurs, une astuce nous permettait de deviner immédiatement que 60 n'est pas premier puisqu'il est divisible par 5 : en effet, un nombre terminant par un 0 ou un 5 est forcément divisible par 5. Le dernier chiffre de 60 est ici 0, donc il est divisible par 5, donc n'est pas premier.
Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97. De telles listes de nombres premiers inférieurs à une borne donnée, ou compris entre deux bornes, peuvent être obtenues grâce à diverses méthodes de calcul.
Concernant 99, la réponse est : Non, 99 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 99) est la suivante : 1, 3, 9, 11, 33, 99. Pour que 99 soit un nombre premier, il aurait fallu que 99 ne soit divisible que par lui-même et par 1.
La liste des diviseurs de 45 est (1, 3, 5, 9, 15, 45), parmi lesquels 3 et 5 sont premiers. La liste des diviseurs de 61 est (1, 61) : c'est un nombre premier. La liste des diviseurs de 32 est (1, 2, 4, 8, 16, 32) et 2 est bien un nombre premier.
Par exemple 21, 27, 33 sont impairs mais divisibles par 3, ils ne sont donc pas premiers. Pour montrer qu'un nombre entier est premier, il suffit de vérifier qu'il n'est divisible par aucun nombre premier inférieur ou égal à sa racine carrée.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le problème, c'est que les nombres de la forme 2p -1 sont rarement premiers. Par exemple 211-1 = 2047, un nombre qui n'est pas premier car il est divisible par 23 et 89.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Concernant 63, la réponse est : Non, 63 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 63) est la suivante : 1, 3, 7, 9, 21, 63. Pour que 63 soit un nombre premier, il aurait fallu que 63 ne soit divisible que par lui-même et par 1.
Certains nombres de pions peuvent se mettre en forme carrée : 1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5 , 36=6×6, puis 49, 64, 81, 100, 121, etc. On les appelle des carrés parfaits ou simplement des carrés.
Puisque 151 est un nombre premier, 151 est aussi un nombre déficient, c'est-à-dire que 151 est un entier naturel qui est strictement supérieur à la somme de ses diviseurs stricts, c'est-à-dire les diviseurs de 151 sans compter 151 lui-même (soit 1, par définition !).
La factorisation première de 60 est 22 × 3 × 5. Les branches terminales révèlent la décomposition en facteurs premiers du nombre 60, soit : 60 = 2² × 3 × 5.
On peut décomposer le nombre 60 en facteurs premiers : 60 = 2 × 2 × 3 × 5.
Concernant 81, la réponse est : Non, 81 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 81) est la suivante : 1, 3, 9, 27, 81. Pour que 81 soit un nombre premier, il aurait fallu que 81 ne soit divisible que par lui-même et par 1.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100. Pour que 100 soit un nombre premier, il aurait fallu que 100 ne soit divisible que par lui-même et par 1.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
1 665 est un nombre impair, puisqu'il n'est pas divisible par 2.
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)
Le symbole de l'infini, en mathématiques et au-delà des mathématiques, est « ∞ », inventé par le mathématicien John Wallis au XVII e siècle, signe dont l'origine est controversée et dont la forme peut évoquer un « 8 » horizontal (mais ce n'est pas en référence au chiffre 8 que ce signe fut choisi) ; cette forme a été ...
Le nombre d'or. Où le rencontre -t-on ? On le désigne par la lettre grecque ( phi ) en hommage au sculpteur grec Phidias (né vers 490 et mort vers 430 avant J.C) qui décora le Parthénon à Athènes. C'est Théodore Cook qui introduisit cette notation en 1914.