Le test de Student est un test paramétrique qui compare la moyenne observée d'un échantillon statistique à une valeur fixée, ou encore la probabilité observée d'un caractère à une probabilité théorique. Il permet aussi de comparer les moyennes de deux échantillons statistiques (on parle alors de test de conformité).
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test T est une statistique inférentielle utilisée pour évaluer les différences entre les moyennes de deux groupes. Le test T est généralement utilisé lorsque les ensembles de données suivent une distribution normale et peuvent avoir des variances inconnues.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
1.1 Objectif
Réaliser un test statistique consiste à mettre en œuvre une procédure permettant : de confronter une hypothèse avec la réalité, ou plus exactement, avec ce que l'on perçoit de la réalité à travers les observations à disposition ; de prendre une décision à la suite de cette confrontation.
Les tests statistiques (ou tests d'hypothèses) vont vous permettre de tirer des conclusions claires, mathématiquement rigoureuses (et élégantes !) à partir des données que vous aurez analysées.
3.1 Généralités. La statistique a pour objet de recueillir des observations portant sur des sujets présentant une certaine propriété et de traduire ces observations par des nombres qui permettent d'avoir des renseignements sur cette propriété.
Comment interpréter les sorties d'un test statistique : le niveau de significativité alpha et la p-value. Lors de la mise en place d'une étude, il faut spécifier un seuil de risque au-dessus duquel H0 ne doit pas être rejetée. Ce seuil est appelé niveau de significativité alpha et doit être compris entre 0 et 1.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Les tests statistiques permettent de contrôler la validité d'une hypothèse émise sur une population-mère, à partir des observations effectuées sur un échantillon. L'hypothèse ainsi énoncée est appelée hypothèse nulle ou H0.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Un test-t de Student a montré que la différence était statistiquement significative, t(38) = -20,8, p < 0,0001, d = 6,57 ; où, t(38) est la notation abrégée pour une statistique t de Student qui a 38 degrés de liberté.
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Test T pour échantillons indépendants
Cliquez sur la variable à tester, soit la VD (HeureNet), ensuite sur la variable dont nous voulons comparer les catégories, soit la VI (sexe). Puis cliquez sur la fonction « Définir des groupes » pour que SPSS « intègre » les deux modalités et précise la direction de la différence.
Des recherches récentes montrent qu'un test statistiquement significatif ne correspond à une évidence forte que pour une valeur p de 0,5 % ou même 0,1 %.
Qu'est-ce que la significativité statistique ? La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Un test est dit statistiquement significatif lorsque le risque quantifié de se tromper, nommé p-valeur, est inférieur à un niveau de signification alpha. Pour être plus précis, la valeur-p est la probabilité d'obtenir une donnée aussi extrême sous l'hypothèse nulle.
Le plus souvent, le seuil de significativité est fixé à 5% (0,05), mais il peut être aussi déterminé pour un autre seuil.
La science des statistiques est utile pour choisir objectivement un échantillon, faire des généralisations valables à partir des observations faites sur l'ensemble d'échantillons, mais aussi pour mesurer le degré d'incertitude, ou la fiabilité, des conclusions tirées.
A toutes ces questions, l'une des réponses les plus adaptées est sans conteste l'outil statistique : il permet en effet d'extraire des connaissances à partir d'un ensemble de données et de fournir des éléments significatifs et opérationnels pour une prise de décision adaptée.