Pourquoi faire une régression linéaire ?

Interrogée par: Agathe Brunet  |  Dernière mise à jour: 15. Oktober 2022
Notation: 4.7 sur 5 (74 évaluations)

La régression linéaire permet de mettre en corrélation différentes variables. Les résultats obtenus restent des prédictions, voire des estimations.

Quand utiliser une régression linéaire ?

La régression linéaire simple permet d'estimer les paramètres de la droite liant la variable réponse à la variable prédictive, mais elle permet également d'évaluer si cette relation est significative ou non. Pour cela, un test T est employé pour évaluer si la pente est significativement différente de 0 ou non.

Pourquoi on fait la régression linéaire ?

La régression linéaire permet de déterminer les paramètres du modèle, en réduisant l'influence de l'erreur. En mesurant plusieurs valeurs de couple (U, I), on peut déterminer la résistance R par régression.

Pourquoi faire une régression ?

L'analyse de régression peut servir à résoudre les types de problèmes suivants : Identifier les variables explicatives qui sont associées à la variable dépendante. Comprendre la relation entre les variables dépendantes et explicatives. Prévoir les valeurs inconnues de la variable dépendante.

Comment interpréter les résultats d'une régression linéaire ?

Comment interpréter les valeurs P dans l'analyse de régression linéaire ? La valeur p pour chaque terme teste l'hypothèse nulle que le coefficient est égal à zéro (aucun effet). Une faible valeur p (<0,05) indique que vous pouvez rejeter l'hypothèse nulle.

Comprendre la régression linéaire en 3 minutes

Trouvé 21 questions connexes

Comment expliquer une régression ?

Une régression est basée sur l'idée qu'une variable dépendante est déterminée par une ou plusieurs variables indépendantes. En supposant qu'il existe une relation de causalité entre les deux variables, la valeur de la variable indépendante affecte la valeur de la variable dépendante.

Comment interpréter le r2 d'une régression linéaire ?

Interprétation des valeurs de R carré? Ce coefficient est compris entre 0 et 1, et croît avec l'adéquation de la régression au modèle: – Si le R² est proche de zéro, alors la droite de régression colle à 0% avec l'ensemble des points donnés.

Quelle sont les étapes de la régression linéaire ?

Sommaire
  • 3.1 Matrice de variance-covariance des coefficients. 3.1.1 Estimation de la variance du résidu. ...
  • 3.2 Étude des coefficients. 3.2.1 Distribution. ...
  • 3.3 Évaluation globale de la régression — Tableau d'analyse de variance. 3.3.1 Tableau d'analyse de variance et coefficient de détermination.

Quand utiliser la régression linéaire multiple ?

Quand utiliser la régression linéaire multiple ? La régression linéaire multiple est une solution permettant d'identifier les liens de corrélation entre un résultat (la variable dite expliquée) et plusieurs variables explicatives et indépendantes.

Comment savoir si un modèle est linéaire ?

2.1 Le modèle linéaire

– Y est une variable aléatoire réelle (v.a.r.) que l'on observe et que l'on souhaite expliquer, ou prédire (ou les deux à la fois) ; on l'appelle variable à expliquer, ou variable réponse (parfois aussi variable dépendante, ou variable endogène).

Comment calculer le coefficient de régression linéaire ?

Pour mémoire une régression linéaire simple consiste à trouver l'équation d'une droite résumant au mieux un nuage de points. On peut écrire l'équation de cette droite ainsi : y = ax + b et nous chercherons à trouver les valeurs de a (la pente) et de b (l'ordonnée à l'origine).

Comment faire une régression linéaire sur SPSS ?

Procédure SPSS
  1. Pour réaliser une régression, choisissez Analyse, puis Régression et Linéaire.
  2. En cliquant sur la flèche vous pouvez insérer la variable dépendante dans la boite Dépendant et la ou les variables indépendantes dans leur boite.

Comment interpréter le coefficient de détermination ?

Concrètement, le coefficient de détermination est un indice de la qualité de la prédiction de la régression linéaire. Le coefficient de détermination se situe entre 0 et 1. Plus il est proche de 1, plus la régression linéaire est en adéquation avec les données collectées.

Pourquoi faire une corrélation ?

Qu'est-ce que la corrélation ? La corrélation est une mesure statistique qui exprime la notion de liaison linéaire entre deux variables (ce qui veut dire qu'elles évoluent ensemble à une vitesse constante). C'est un outil courant permettant de décrire des relations simples sans s'occuper de la cause et de l'effet.

Pourquoi Appelle-t-on la régression régression ?

Le terme provient de la régression vers la moyenne observée par Francis Galton au XIX e siècle : les enfants de personnes de grande taille avaient eux-mêmes une taille supérieure à celle de la population en moyenne, mais inférieure à celle de leurs parents (toujours en moyenne), sans que la dispersion de taille au sein ...

Quel est l'objectif de la régression multiple ?

L'objectif général de la régression multiple (le terme a été utilisé initialement par Pearson, 1908) est d'en savoir plus sur la relation entre plusieurs variables indépendantes ou prédictives et une variable dépendante ou de critère.

Comment faire une régression linéaire sur Excel ?

Pour faire l'analyse de régression, nous irons donc dans le menu Données (Data) et nous choisirons le sous-menu Analyse de données (Data Analysis). Ensuite, nous sélectionnerons l'option Régression (Regression) pour effectuer notre régression linéaire multiple.

Quand utiliser MCO ?

La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie.

Quel modèle de régression choisir ?

Si Y est qualitative, le modèle est nommé régression logistique, logistic regression en anglais. Le cas le plus simple est la régression logistique binaire (Y n'a que deux modalités). Si ce n'est pas le cas, la régression logistique peut être multinomiale, polytomique, ordinale, nominale...

Comment trouver la variable dépendante et indépendante ?

Les variables dépendantes et indépendantes.

En général, on représente la variable indépendante par la lettre «x». Une variable dépendante dans un problème est le paramètre du problème qui varie sous l'influence de la variable indépendante. En général, on représente la variable dépendante par la lettre «y».

Comment choisir un modèle statistique ?

Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.

Pourquoi on utilise le log ?

La spécification en log se justifie en particulier si vous cherchez à estimer une élasticité, mais également si la distribution de votre variable dépendante (conditionnellement à vos régresseurs) est très asymétrique ou hétéroscédastique.

C'est quoi une droite de régression ?

​​La droite de régression est la droite qu'on peut tracer dans le nuage de points qui représente le mieux la distribution à deux caractères étudiée. Il existe plusieurs manières de trouver l'équation de cette droite de régression.

Comment savoir si les variables sont significatives ?

Pour faire simple, une variable est significative avec un intervalle de confiance de 95% si son t-stat est supérieur à 1,96 en valeur absolue, ou bien si sa P-value est inférieure à 0,05.

Quel est le contraire de régression ?

récession, recul, regrès; anton. progrès, progression.